Dust Deposition Footprint & Impact on Saldanha Bay Soils

Background

- Mining and associated activity has a proven detrimental effect on the environment. Studies have shown that there is causal link between mining activity and contamination of the environment 1
- Metal contaminants can move from the emission source into the environment by wind ²
- One method to assess the level of contamination is by testing the concentration of metals in the soils and comparing them to natural occurring levels ³

Saldanha Bay District

- Saldanha Bay on the West Coast has experienced an increase in the metal ore transportation through the area
- This activity has the potential to cause elevated levels of metals in the soils

Fig 2: Red Iron Ore stained Road & House

Fig 3: Open Top Transportation

Hypothesis

The presence of multiple mining related activities & the exportation terminal in Saldanha Bay District has contributed to metal contamination of soils.

Key Questions

- 1. What are key emission sources and are metals potentially dispersed by wind from these sources?
- 2. Does LOI (organic matter), pH and PSD affect metal retention of soils?
- 3. Are soils in this area contaminated?

Fieldwork Sampling

Fig 4: Sampling Sites in Relation to Emission Sources in Saldanha Bay District

Two samples were taken at each sample sites, at two different depths of 0-5 cm and 5-20 cm

Analysis Procedure

- 1. Sample preparation
 - Sieving over 1 and 2 mm
 - Splitting: Cone & Quartering
- 2. Loss on ignition (LOI)
- 3. XRF Elemental Analysis
- 4. pH analysis
- 5. Particle Size Distribution
- 6. QGIS Interpolation
- 7. Statistical & Location Correlation

Results & Discussion

- Metals of concern: Fe, Mn, Zn, Pb & Ti
- **Concentration maps show three** main elevated concentration sites: port terminal, Handling/Smelter B and in Vredenburg
- The dispersion of metals as result of predominant southerly wind direction (Fig 9)
- Topography (Fig 8) influence particles settling at elevated site in Vredenburg
- Zn shows 4 sites of high enrichment which are close to the MPT (Fig 10)
- Fe also shows the same 4 sites away from the MPT (Fig 11)

Fig 5: Mn Interpolated

Fig 6: Pb Interpolated

Concentration Map

Petroleum Storage

Fig 7: Fe Interpolated Concentration Map

Vredenburg Site

Fig 9: Windrose of Saldanha

Fig 10: Zn Surface Enrichment

Fig 11: Fe Surface Enrichment

Fig 12 & 13 show that there is a potential correlation between the LOI % and clay % and increase in concentration for Zn %. Similar trends were shown for metals of concern.

Fig 12: Zn% vs Clay & Silt %

Total Environment, pp. 53-78.

Fig 13: Zn% vs LOI%

The Pollution Index (PI) shows half the sites are moderately polluted and Mn has the highest % of highly polluted sites (Table 1)

Table 1: Percentage of Sites Considered Contaminated

	Ti (%)	Mn (%)	Fe (%)	Zn (%)	Pb (%)	Pollution level
PI < 1	36.8	42.1	44.7	13.2	52.6	Unpolluted
1 ≤ PI ≤ 3	63.2	47.4	47.4	78.9	42.1	Unpolluted to
						moderately polluted
3 ≤ PI	_	10.5	7.9	7.9	5.3	Highly polluted

Conclusions

- Two locations show an increased metal concentration in soils: the port terminal and Vredenburg sites. Smelter B and handling zone also show a moderately increased level.
- Organic matter content and % clay show a potential relationship with concentration of metals in soil.
- The presence of metals in soil suggest that they are possibly in the atmosphere too – creating concern for inhalation of toxic metals.

Recommendations

- Perform additional sampling to determine soils prone to metal retention for monitoring purposes
- Obtain airborne sample to determine concentrations and sources
- Complete seasonal sampling to account for variations in metal concentrations for various atmospheric conditions
- Refine dispersion models used and compare the effectiveness of those currently amployed

References

¹Li, Z. et al., 2014. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, Volume 468, pp. 843-853. ² Csavina, J. et al., 2012. A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Science of the

3 Kribek, B. et al., 2014. Contamination of soils with dust fallout from the tailings dam at the Rosh Plnah area, Namibia: Regional assessment, dust dispersion modeling and environmental consequences. Journal of Geochemical Exploration, Volume 144, pp. 391-408