

BLENDED CEMENTS – THE TCI PERSPECTIVE

Bryan Perrie

LC3 Workshop
Cape Town
November 2019

Content

- Introduction
- Blended cements in South Africa
- Availability of SCMs
- Role and benefits of SCMs
- Challenges
- Conclusion

Introduction

- Prior to 1996 South Africa had a limited range of cements
 - OPC
 - RHC
 - PC15SL/FA
 - PC30
 - PBFC

Blended Cements in South Africa

- South Africa has used SCMs for a long time.
- GGBS was introduced in the early 1960s
- Fly ash in the late 1980's

Blended Cements in South Africa

- South Africa adopted EN 197 (SANS 50197) in 1996
- Adopted EN standards SANS 50450, SANS 55167 and SANS 53263 for extenders a few years ago

Table 1.1: Common cements: SABS EN 197-1

	Notation of products (types of common cement)		Composition, percentage by mass(4)										
Main types			Clinker	Blast- furnace slag	Silica fume	Pozz natural	natural calcined	Fly siliceous		Burnt shale	Lime	stone	Minor addition- al constit-
			к	s	D(ts)	P	Q	v	w	т	L	LL	uents
CEM I	Portland cement	CEM I	95 - 100	-	-	-	-	-	-	-	-	-	0 - 5
	Portland-slag cement	CEM II A-S	80 - 94	6 - 20	-	-	-	-	-	-	-	-	0 - 5
		CEM II B-S	65 - 79	21 - 35	-	-	-	-	-	-	-	-	0 - 5
	Portland-silica fume cement	CEM II A-D	90 - 94	-	6 - 10	-	-	-	-	-	-	-	0 - 5
		CEM II A-P	80 - 94	-	-	6 - 20	-	-	-	-	-	-	0 - 5
1 1	Portland- pozzolana	CEM II B-P	65 - 79	-	-	21 - 35	-	-	-	-	-	-	0 - 5
	cement	CEM II A-Q	80 - 94	-	-	-	6 - 20	-	-	-	-	-	0 - 5
		CEM II B-Q	65 - 79	-	-	-	21 - 35	-	-	-	-	-	0 - 5
1 1		CEM II A-V	80 - 94	-	-	-	-	6 - 20	-	-	-	-	0 - 5
CEM II	Portland-fly ash cement	CEM II B-V	65 - 79	-	-	-	-	21 - 35	-	-	-	-	0 - 5
		CEM II A-W	80 - 94	-	-	-	-	-	6 - 20	-	-	-	0 - 5
		CEM II B-W	65 - 79	-	-	-	-	-	21 - 35	-	-	-	0 - 5
	Portland-burnt shale cement	CEM II A-T	80 - 94	-	-	-	-	-	-	6 - 20	-	-	0 - 5
		CEM II B-T	65 - 79	-	-	-	-	-	-	21 - 35	-	-	0 - 5
1	Portland- limestone cement	CEM II A-L	80 - 94	-	-	-	-	-	-	-	6 - 20	-	0 - 5
		CEM II B-L	65 - 79	-	-	-	-	-	-	-	21 - 35	-	0 - 5
		CEM II A-LL	80 - 94	-	-	-	-	-	-	-	-	6 - 20	0 - 5
		CEM II B-LL	65 - 79	-	-	-	-	-	-	-	-	21 - 35	0 - 5
1	Portland-	CEM II A-M	80 - 94					6 - 20				}	0 - 5
	composite cement ^[c]	CEM II B-M	65 - 79	t				21 - 35					0 - 5
CEM III	Blastfurnace cement	CEM III A	35 - 64	36 - 65	-	-	-	-	-	-	-	-	0 - 5
		CEM III B	20 - 34	66 - 80	-	-	-	-	-	-	-	-	0 - 5
		CEM III C	5 - 19	81 - 95	-	-	-	-	-	-	-	-	0 - 5
CEM IV	Pozzolanic cement ^(c)	CEM IV A	65 - 89	-			11 - 35			-	-	-	0 - 5
		CEM IV B	45 - 64	-			36 - 55			-	-	-	0 - 5
CEM V	Composite cement ^[c]	CEM V A	40 - 64	18 - 30	-		18 - 30		-	-	-	-	0 - 5
		CEM V B	20 - 39	31 - 50	-		31 - 50		-	-	-	-	0 - 5

Notes

- (a) The values in the table refer to the sum of the main and minor additional constituents.
- (b) The proportion of silica fume is limited to 10%.
- (c) In portland-composite cements CEM II A M and CEM II B M, in pozzolanic cements CEM IV A and CEM IV B, and in composite cements CEM V A and CEM V B the main constituents other than clinker shall be declared by designation of the cement.

Availability of extenders

- GGBS available in Vanderbijlpark and Newcastle
- GGCS available from Saldahna??????
- Fly ash from a number of power stations primarily in Mpumulanga and Free State
- Silica fume in Gauteng and Limpopo
- Poor geographic spread

Role and Benefits of SCMs

Cost

Role in improving durability

Role in reducing CO2 emissions

Role in reducing dumps

Cost benefits

 GGBS, GGCS, fly ash and limestone cheaper than cement

Durability Benefits

- Reduction in thermal cracking and heat of hydration
- Prevention or reduced risk of ASR
- Good for chloride capture or reduced chloride attack
- Reduced permeability preventing aggressive agent ingress
- Improvement in sulphate resistance

Role in Reducing CO2 Emissions

Cement Type	Average Emission Values				
	(kg CO ₂ e/ton)				
CEM I	985				
CEM II A-L	840				
CEM II A-S	815				
CEM II A-V	790				
CEM II B-L	720				
CEM II B-S	730				
CEM II B-V	690				
CEM III A	560				
CEM IV A	640				
CEM IV B	570				
CEM V A	590				
CEM V B	415				

Extender Type	Average Emission Values				
	(kg CO ₂ e/ton)				
Fly Ash	2				
GGBS	130				

Material	Average Emission Values			
	(kg CO ₂ e/ton)			
Aggregates	2			
Admixtures	220			
Water	1			

Reducing dumps

• >50 million tons of ash with 10% utilisation

Challenges

- Poor geographic spread
- Lack of SCMs in coastal areas

Challenges

- Poor geographic spread
- Lack of extenders in coastal areas
- Access to SCMs
- Inappropriate use of heavily extended cements due to lack of knowledge and understanding
- Quality of some blended products

Conclusions

- Extensive history of use
- Large number of benefits both in durability and sustainability
- There are challenges
- Blended cements are here to stay

Thank you

