
Computers and Structures 223 (2019) 106101
Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate /compstruc
On the best choice of symmetry group for group-theoretic
computational schemes in solid and structural mechanics
https://doi.org/10.1016/j.compstruc.2019.106101
0045-7949/� 2019 Elsevier Ltd. All rights reserved.

E-mail address: alphose.zingoni@uct.ac.za
Alphose Zingoni
Department of Civil Engineering, University of Cape Town, Rondebosch 7701, Cape Town, South Africa
a r t i c l e i n f o
Article history:
Received 5 January 2019
Accepted 23 July 2019

Keywords:
Symmetry
Group theory
Symmetry group
Eigenvalue problem
Vibration
Mode shape
a b s t r a c t

Group theory has been used for many years to study phenomena in various branches of physics and
chemistry, such as quantum mechanics, crystallography and molecular structure. Within engineering
mechanics, it has found application in simplifying the analysis of systems exhibiting symmetry proper-
ties, and has been particularly effective in studying vibration, bifurcation and kinematic phenomena.
Symmetry properties of physical systems are described by symmetry groups. Given a physical system
with multiple symmetry properties, the question arises as to which of the various possible symmetry
groups is the most appropriate for computational purposes. This question is particularly relevant for con-
figurations belonging to symmetry groups of high order, which typically are associated with several sub-
groups. The aim of this paper is to highlight the computational implications of choice of symmetry group,
and to present, for the first time, a rational criterion for identifying the most computationally efficient
symmetry group for a given problem. The criterion is applied to the problem of a cubic configuration with
octahedral symmetry.
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1. Introduction

Group theory is a powerful tool in the analysis of physical sys-
tems exhibiting symmetry properties [1]. Early applications of
group theory arose in various branches of physics and chemistry,
such as crystallography, molecular structure and quantum
mechanics, where symmetry abounds [2–5]. Group theory has
proved to be very effective in studying physical phenomena in
complex molecules, such as the vibration of the carbon-60 mole-
cule [6].

Within the field of engineering mechanics, it has been long
recognised that symmetry has a significant influence on the beha-
viour of a system, and that symmetry can be exploited to simply
the analysis of the system. Among the earliest applications of
group theory to problems in structural mechanics was the buckling
of symmetrical frameworks [7]. Since then, bifurcation theory has
emerged as one of the most fruitful areas of application of group-
theoretic methods in structural mechanics [8–12]. Although wider
in scope, group theory has come to be regarded as the ‘‘mathemat-
ics of symmetry” [13], owing to its unique suitability in accounting
for all physical phenomena associated with symmetry. Group the-
ory has been successfully used to simplify the static analysis of
symmetric space frames [14], the decomposition of load systems
[15,16], and the study of rigidity and finite mechanisms in skeletal
structures [17–24]. Almost 25 years ago, the author and co-
investigators [14] presented a group-theoretic formulation for
the flexibility analysis of multi-storey space frames, and went on
to show how arbitrary loads on a symmetric structure can be
decomposed for allocation to the symmetry-adapted subspaces of
the relevant symmetry group [15]. Since then, applications of
group theory have been extended to many other structural
problems.

Group theory has proved to be particularly suitable for studying
problems of the vibration of symmetric structures [25–38], which
have included spring-mass dynamic systems [32,33], plane grids
and layered space grids [27,31], cable-net systems [28,37,38],
plates [35] and shells [29]. Among the author’s early contributions
in the area of vibration analysis were a group-theoretic symbolic
formulation for the computation of natural frequencies of rectan-
gular and square plane grids [27], and the formulation of a
group-theoretic computational scheme for the vibration analysis
of high-tension cable nets [28]. The latter work has recently been
extended to cable nets of more complex symmetry [37,38]. The
author has also employed group theory to study the small trans-
verse vibrations of layered space grids [31], allowing a deeper
understanding of the character of the modes for various grid con-
figurations (triangular and hexagonal layouts included). In another
study [33], it was shown how certain rectilinear spring-mass
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dynamical systems with no apparent symmetry properties can be
converted into equivalent symmetric configurations, and group
theory then applied to simplify the calculation of their natural fre-
quencies. Based on group-theory, a finite-difference formulation
for the vibration analysis of symmetric plates has also been pre-
sented [35]. Some of these formulations may be seen in a recent
book on linear vibration analysis [36], which also includes a con-
cise treatment of symmetry, symmetry groups and group repre-
sentation theory.

Group theory has also been employed by Kaveh and Nikbakht
[39] to study the stability of skeletal structures. As Kaveh and other
investigators have shown, symmetric and repetitive structures
may also been studied using the related techniques of graph theory
[40–42], or a combination of group theory and graph theory
[34,43–45].

With application to finite-element analysis in mind, several
investigators (including the author) have developed formulations
that utilize concepts of symmetry and group theory to simplify par-
ticular levels of the finite elementmethod [46–51]. At element level,
group theory has been used to decompose the displacement field of
truss and beamfinite elements [46] aswell as solid hexahedral finite
elements [48–50], in all cases leading to considerable simplifica-
tions in the calculation of associated elementmatrices. At structural
level, group-theory has been employed to achieve simplifications in
the buckling analysis of plates and shells [47], and in the dynamic
analysis of symmetric finite-element models [51].

Since symmetry is not always easy to identify (particularly in
complex structures), a significant amount of effort has also been
directed towards developing procedures for the automatic recogni-
tion of symmetry [52–55]. Not only does group theory reduce com-
putational effort, but it also provides valuable insights on the
behaviour of a physical system [23,31,56,57].

It should be clarified right from the outset that in the present
context, use of group theory to tackle problems involving symme-
try is not aimed at increasing the accuracy of the solution. Rather,
and as demonstrated in previous studies of the author, the merits
of the procedure lie in the computational simplications that are
achieved when the vector space of the problem is decomposed into
several symmetry-adapted subspaces, as well as the insights on the
physical behaviour of the system that are gained. In the context of
vibration analysis, some of these insights include the prediction of
the symmetry types of all the vibration modes before any detailed
analysis is undertaken, the prediction of the existence of doubly-
occurring frequencies, a better understanding of the nature of the
modes (type of symmetries) associated with these repeating fre-
quencies, and a prediction of points, lines and planes of stationary
nodes (knowledge of which can be valuable when it is required to
decide the best locations for the placement or installation of
vibration-sensitive equipment).

In itself, group-theoretic decomposition is a mathematically
exact process, therefore as long as the basic structural theory is
correct, the results of group-theoretic simplifications will also be
correct. So while group-theoretic computations do not increase
the accuracy of the solution, they can certainly make the calcula-
tions simpler and faster through the vector-space decomposition.
It might be argued that vector-space decomposition is not neces-
sary since computers can do an analysis quite quickly in the full
space of the problem, but the real merit of group-theoretic decom-
positions becomes evident in the case of large-scale problems with
millions of unknowns or degrees of freedom, where huge compu-
tational effort is involved, and simplifications are desirable. For
such problems, the splitting of the computations into subspaces
of smaller dimension also lends itself to the use of parallel proces-
sors, which would speed up computations even further.

A system or an object is said to exhibit symmetry if it can be
turned into one or more new configurations physically indistin-
guishable from the initial configuration through the application
of one or more symmetry operations. Symmetry operations include
reflections in planes, rotations about axes, or inversions through
the centre. This broad definition of symmetry encompasses the
more conventional concepts of bilateral symmetry (where a struc-
tural configuration has two axes or two planes of symmetry that
are perpendicular to each other) and cyclic symmetry (where a
structural configuration has one axis of rotational symmetry and
a finite number of rotational symmetry operations about this axis).
Configurations exhibiting bilateral symmetry and cyclic symmetry
are therefore covered by present considerations. There is also a
related class of problems called repeated structures, where identi-
cal structural units repeat in one or more directions, or around a
given axis. Unless these structures also exhibit symmetry in the
sense already defined, they will not be the subject of present con-
siderations, which is solely concerned with symmetric structures.

A set of elements {a,b,c,. . .,r,. . .} comprises a group G if the fol-
lowing axioms are satisfied:

(i) the product c of any two elements a and b of the group,
which is given by c = ab, is a unique element which also
belongs to the group.

(ii) among the elements of G, there is an identity element e
which, when multiplied with any element a of the group,
leaves the element unchanged: ea = ae = a.

(iii) each element a of G has an inverse a�1 also belonging to the
group, such that aa�1 = a�1a = e.

(iv) when three or more elements of G are multiplied, the order
of the multiplication does not affect the result: a(bc) = (ab)c.

A group where all elements are symmetry operations consti-
tutes a symmetry group. Symmetry operations may be reflections
in planes of symmetry (denoted by rl, where l is the plane of sym-
metry), rotations about an axis of symmetry (denoted by Cn, if the
angle of rotation is 2p/n), rotary-reflections Sn (denoting a rotation
through an angle 2p/n, combined with a reflection in the plane per-
pendicular to the rotation axis), or inversions i (which are reflec-
tions in the centre of symmetry, that is, the one point of a space
object which is unmoved by all symmetry operations). Clearly, an
inversion is equivalent to a rotary-reflection of angle of rotation
p. In all our considerations, we will assume that all planes of sym-
metry are vertical, unless otherwise stated, hence we will denote
reflection planes by the symbol m instead of l.

Classification of symmetry groups is usually based on the types
of symmetry elements making them up. Groups denoted by Cn and
Cnv all possess a single n-fold axis of rotational symmetry; they are
of order n and 2n respectively, the order of a group being simply
the total number of elements comprising it. Thus, each of these
groups possesses n rotation elements (one of which is actually
the identity element e), with the Cnv family having an additional
n reflection elements. Groups denoted by Dn and Dnh have one n-
fold axis of rotational symmetry and horizontal C2 axes, with the
Dnh family also having a horizontal plane of reflection. Groups Th,
Oh and Ih denote tetrahedral, octahedral and icosahedral groups
respectively, and are associated with regular polyhedra with more
than one n-fold axis of symmetry. These are not the only types of
symmetry groups; there are several other types.

Fig. 1 shows nodal configurations with the symmetries of (a) a
square, (b) a regular hexagon, (c) a right prism with a base in the
form of a regular hexagon, and (d) a cube. The arrows indicate dis-
placement or force vectors associated with these nodes, with pos-
itive directions chosen to comply with the full symmetry of the
nodal configuration. The symmetry groups of these four configura-
tions, with some of their subgroups (a subgroup being simply a
group whose elements are a subset of the elements of the parent
group) given in brackets, are as follows:
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Fig. 1. Nodal configurations with various symmetries: (a) square (C4v symmetry); (b) regular hexagon (C6v symmetry); (c) right prism with a base in the form of a regular
hexagon (D6h symmetry); (d) cube (Oh symmetry).
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(a) C4v ðC2v ; C1vÞ
(b) C6v ðC3v ; C1vÞ
(c) D6h ðD3h; C6v ; C3v ; C1v Þ
(d) Oh ðO; D4h; D2h; C4v ; C2v ; C1v Þ

The symmetry groups C4v , C6v , D6h and Oh are of order 8, 12, 24
and 48 respectively, the order of a symmetry group being the num-
ber of symmetry elements it has. In describing the symmetry of a
given structural configuration, the full symmetry group (taking
into account all the symmetry of the configuration) or any of its
subgroups (accounting for only some of the symmetry) may be
used. An example, the configuration in Fig. 1(a) may be analysed
on the basis of the symmetry group C4v (which takes into account
all the symmetry) or on the basis of the subgroup C2v (which takes
into account only some of the symmetry).

Given a physical systemwith multiple symmetry properties, the
question arises as towhich of the various possible symmetry groups
is the most efficient for computational purposes. This is a very
important question which hardly seems to have been addressed in
the literature on group-theoretic formulations in solid and struc-
tural mechanics. The question is particularly relevant to configura-
tions belonging to symmetry groups of high order, which typically
are associated with several subgroups. The aim of this paper is to
highlight the computational implications of choice of symmetry
group, and present a rational criterion for identifying themost com-
putationally efficient symmetry group for a given problem.

We begin, in Section 2, by explaining some key concepts on the
basis of symmetry groups C2v and C4v . These groups are applicable
to many practical layouts of plane grids, space grids, cable-net
roofs and plates, which are usually of rectangular plan form (the
square being a special case). After stating the elements of groups
C2v and C4v , we introduce the concept of an idempotent, and pre-
sents the idempotents for these groups. These are central to
group-theoretic computations.
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In Section 3, we consider a 16-node lumped-mass dynamic sys-
tem of C4v symmetry as a case study. The system is general, and
may represent a plane grid, a space grid, a prestressed cable net,
a plate or any other structural system having this configuration
in plan, and experiencing small transverse vibrations. We tackle
the problem on the basis of both symmetry groups C2v and C4v ,
from the derivation of symmetry-adapted freedoms (subspace
basis vectors) and the calculation of symmetry-adapted flexibility
coefficients, to the setting up of the characteristic equations that
yield the eigenvalues (i.e. natural frequencies of vibration) of the
system. In this way, the computational implications of using either
of these symmetry groups are clearly illustrated.

An added benefit of the treatment is the presentation of a rigor-
ous derivation of subspace flexibility matrices from an arbitrary set
of conventional flexibility coefficients. The formulation is applied
to the numerical example of the small transverse vibrations of a
plane grid, and the symmetry group C2v selected in computing
all natural frequencies and mode shapes of the system.

In Section 4, we go back to the general situation of a physical
configuration whose symmetry can be described by a number of
alternative symmetry groups, and propose a simple criterion for
identifying the best symmetry group for computational purposes.
The criterion is applied to the cubic configuration of Fig. 1(d), allow-
ing some important conclusions to be made. Preliminary findings
were presented at the Thirteenth International Conference on Com-
putational Structures Technology in Barcelona [58], but without the
detailed derivations and analysis that now appear in this paper.
2. Some properties of symmetry groups C2v and C4v

2.1. Symmetry elements

The symmetry group C2v describes the symmetry of a rectangu-
lar configuration. Let us take the configuration to lie in the xy
plane, with the coordinate directions x; yf g being parallel to the
sides of the rectangle, and the origin O being at the centre of the
configuration. The z axis is perpendicular to the xy plane and
passes through O. With reference to this coordinate system, the
symmetry elements of group C2v may be described are as follows:

e: identity element
C2: rotation through an angle of p/2 about the z axis
rx: reflection in the vertical xz plane
ry: reflection in the vertical yz plane

The symmetry group C4v, describing the symmetry properties of
a square, has all the above four symmetry elements. In addition, it
also has the following symmetry elements, where the subscripts 1
and 2 refer to the two diagonals 1-1 and 2-2 of the square:

C4: clockwise rotation through an angle of p/4 about the z axis
C�1
4 : anticlockwise rotation through an angle of p/4 about the z

axis
r1: reflection in the vertical diagonal plane containing the diag-
onal 1-1 and the z axis
r2: reflection in the vertical diagonal plane containing the diag-
onal 2-2 and the z axis

Thus the symmetry groups C2v and C4v are of order 4 and 8
respectively, the order of a group being the number of symmetry
elements making up the group.

In the next section, we will briefly explain the concept of an
idempotent, which is central to group-theoretic decomposition.
For a detailed treatment of other important concepts leading to
this (such as the classes of a group, class sums, group representa-
tions, characters, irreducible representations, character tables,
group algebra), the reader may refer to some of the earlier work
of the author [28], or books on application of group theory to phys-
ical [1] and structural-engineering problems [25,36].

2.2. Idempotents

According to representation theory of symmetry groups [1–5],
idempotents P(i) of the group algebra are its non-zero elements
which satisfy the relation {P(i)}2 = P(i). Orthogonal idempotents sat-
isfy the relation P(i)P(j) = 0 if i– j. They are linearly independent;
the sum of orthogonal idempotents is also an idempotent. Idempo-
tents of the centre of the group algebra are linear combinations of
class sums. An idempotent P(i) corresponding to the irreducible
representation R(i), by operating on vectors of the space V, nullifies
every vector which does not belong to the subspace S(i) of R(i). Thus,
out of all the vectors belonging to the group-invariant subspaces
S(1), S(2),. . .,S(k), the operator P(i) selects all vectors belonging to
the subspace S(i), and therefore acts as a projection operator [1] of
the subspace S(i). The orthogonal idempotents of the centre of the
group algebra (P(i) for subspace S(i); i = 1,2,. . .k) can be written
down directly from the character table using the relation

P ið Þ ¼ hi

h

X
r
vi r

�1� �
r ð1Þ

where h is the order of G (i.e. the number of elements of G), hi is the
dimension of the ith irreducible representation (given by hi = vi(e),
the first character of the ith row of the character table), vi is a char-
acter of the ith irreducible representation, r is an element of G, and
r�1 its inverse. The idempotents for groups C2v and C4v are obtained
as follows [28,31,36,57]:

Group C2v

Pð1Þ ¼ 1
4

eþ C2 þ rx þ ry
� � ð2aÞ

Pð2Þ ¼ 1
4

eþ C2 � rx � ry
� � ð2bÞ

Pð3Þ ¼ 1
4

e� C2 þ rx � ry
� � ð2cÞ

Pð4Þ ¼ 1
4

e� C2 � rx þ ry
� � ð2dÞ

Group C4v

Pð1Þ ¼ 1
8

eþ C4 þ C�1
4 þ C2 þ rx þ ry þ r1 þ r2

� �
ð3aÞ

Pð2Þ ¼ 1
8

eþ C4 þ C�1
4 þ C2 � rx � ry � r1 � r2

� �
ð3bÞ

Pð3Þ ¼ 1
8

e� C4 � C�1
4 þ C2 þ rx þ ry � r1 � r2

� �
ð3cÞ

Pð4Þ ¼ 1
8

e� C4 � C�1
4 þ C2 � rx � ry þ r1 þ r2

� �
ð3dÞ

Pð5AÞ ¼ 1
4

e� C2 þ r1 � r2ð Þ ð3eÞ

Pð5BÞ ¼ 1
4

e� C2 � r1 þ r2ð Þ ð3fÞ
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3. A lumped-mass dynamic system of C4v symmetry

3.1. Problem description

Fig. 2(a) shows the horizontal projection of a 16-node lumped-
mass dynamic system whose arrangement of supports, members
and masses conforms to the symmetry group C4v (i.e. the pattern
of members, nodes and supports has the symmetry of a square).
The system is experiencing small transverse vibrations at the nodal
locations; we will denote the associated transverse displacements
by wi (i = 1,2,. . .,16). Consistent with the usual assumptions of
lumped-parameter models, the members are assumed to be
‘‘massless”, their role being simply to provide the restoring forces
necessary to sustain the transverse vibrations; all the mass of the
system is assumed to be concentrated at the nodes. For the pur-
poses of this discussion, we will ignore the effects of damping.

This physical system is quite general, and may represent (i) a
plane grid of rigidly connected members (the vertical restoring
Fig. 2. A 16-node dynamic system with C4v symmetry: (a) node numbering and
reference axes; (b) values of masses at the nodes.
forces being provided by the flexural stiffnesses of the grid mem-
bers), (ii) a double-layer space grid of pin-jointed truss members
(the vertical components of the axial forces of the space grid pro-
viding the restoring forces), (iii) a tightly stretched shallow cable
net (the vertical components of the cable prestress forces providing
the restoring forces) (iv) a relatively light square plate carrying a
regular array of heavy pieces of machinery (such as pumps or elec-
tric motors) at specific locations (the restoring forces being the
flexural rigidity of the plate).

Let the nodes of the system be numbered from 1 to 16 as
shown. The centre of symmetry of the configuration is the point
O in the diagram. The four reference axes of symmetry are the
coordinate axes x-x and y-y, and the diagonal axes 1-1 and 2-2.
The symmetry operations of group C4v, when applied on the nodal
positions 1–16 of the configuration, yield three permutation sets:
corner nodes {1,4,13,16}, mid-side nodes {2,3,5,8,9,12,14,15}, and
centre nodes {6,7,10,11}. Consistent with the requirements of C4v
symmetry, each node of a given permutation set will be modelled
with the same mass. The equal masses assigned to each of the
three sets of nodes are denoted by {m1,m2,m3} as illustrated in
Fig. 2(b). The pattern of these is, of course, of symmetry C4v.

Conventional vibration analysis of the physical system results in
an eigenvalue problem of dimension n, where for our example
n = 16. The characteristic equation is a 16-th degree polynomial
equation whose roots are the 16 eigenvalues of the problem, which
are, of course, the 16 natural frequencies of vibration of the system.
Substitution of each eigenvalue into the eigenvector equation
yields the associated eigenvector, which is the mode shape corre-
sponding to the natural frequency in question. All these calcula-
tions require a considerable amount of effort. Owing to
symmetry, group-theory allows the 16-dimensional vector space
of the problem to be decomposed into k independent subspaces
each of dimension ni (i = 1,2,. . .,k), where ni < n and
n1 þ n2 þ :::þ nk ¼ n. The eigenvalues calculated within these
smaller subspaces are, in fact, the eigenvalues of the original prob-
lem. This is why group-theoretic decomposition results in consid-
erable reductions in computational effort in comparison with a
conventional analysis of the physical system. If more than one
symmetry group is applicable, the reduction in computational
effort depends on the symmetry group that is adopted in modelling
the behaviour of the system.

While the full symmetry of the 16-node configuration of Fig. 2(a)
is described by the symmetry group C4v, it is clear that the subgroup
C2v is also applicable, although it is not able to account for all the
symmetry properties of the configuration. However, the fact that
the group C4v can account for all the symmetry of the configuration
does not automatically mean that it is computationally more effi-
cient than group C2v in calculating the natural frequencies (eigen-
values) and mode shapes (eigenvectors) of the system. In the next
section, we explore this issue further, by assembling the eigenvalue
equations of the system on the basis of both groups C2v and C4v, and
comparing the results. It is also evident that the very simple group
C1v, with elements e (identity) and rx (reflection in the xz plane),
also applies, but with only two idempotents Pð1Þ ¼ 1=2 eþ rxð Þ
and Pð2Þ ¼ 1=2 e� rxð Þ corresponding to the symmetric and
antisymmetric subspaces respectively, this group is clearly too inef-
ficient for the configuration of Fig. 2(a), and will not be pursued.
3.2. Symmetry-adapted freedoms

To generate the symmetry-adapted freedoms of a given sub-
space of the 16-node example, we apply the idempotent of the sub-
space to each of the 16 degrees of freedom of the system. We then
select any set of linearly independent symmetry-adapted freedoms
as the basis vectors spanning that subspace. In writing down the
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basis vectors, we do not need to include scalar multipliers such as
1=4 or 1=8. We repeat this for all subspaces of the problem, each
time using the correct idempotent for the subspace in question.
Considering each of the groups C2v and C4v separately, we obtain
the following results for the basis vectors of the 16-node configura-
tion of Fig. 2(a):

Symmetry Group C2v

Basis vectors for subspace S(1)

Uð1Þ
1 ¼ w1 þw‘16 þw13 þw4 ð4aÞ

Uð1Þ
2 ¼ w2 þw15 þw14 þw3 ð4bÞ

Uð1Þ
3 ¼ w5 þw12 þw9 þw8 ð4cÞ

Uð1Þ
4 ¼ w6 þw11 þw10 þw7 ð4dÞ
Basis vectors for subspace S(2)

Uð2Þ
1 ¼ w1 þw16 �w13 �w4 ð5aÞ

Uð2Þ
2 ¼ w2 þw15 �w14 �w3 ð5bÞ

Uð2Þ
3 ¼ w5 þw12 �w9 �w8 ð5cÞ

Uð2Þ
4 ¼ w6 þw11 �w10 �w7 ð5dÞ
Basis vectors for subspace S(3)

Uð3Þ
1 ¼ w1 �w16 þw13 �w4 ð6aÞ

Uð3Þ
2 ¼ w2 �w15 þw14 �w3 ð6bÞ

Uð3Þ
3 ¼ w5 �w12 þw9 �w8 ð6cÞ

Uð3Þ
4 ¼ w6 �w11 þw10 �w7 ð6dÞ
Basis vectors for subspace S(4)

Uð4Þ
1 ¼ w1 �w16 �w13 þw4 ð7aÞ

Uð4Þ
2 ¼ w2 �w15 �w14 þw3 ð7bÞ

Uð4Þ
3 ¼ w5 �w12 �w9 þw8 ð7cÞ

Uð4Þ
4 ¼ w6 �w11 �w10 þw7 ð7dÞ

Symmetry Group C4v

Basis vectors for subspace S(1)

Uð1Þ
1 ¼ w1 þw4 þw13 þw16 ð8aÞ

Uð1Þ
2 ¼ w2 þw3 þw5 þw8 þw9 þw12 þw14 þw15 ð8bÞ

Uð1Þ
3 ¼ w6 þw7 þw10 þw11 ð8cÞ
Basis vector for subspace S(2)

Uð2Þ
1 ¼ w2 �w3 �w5 þw8 þw9 �w12 �w14 þw15 ð9Þ
Basis vector for subspace S(3)

Uð3Þ
1 ¼ w2 þw3 �w5 �w8 �w9 �w12 þw14 þw15 ð10Þ
Basis vectors for subspace S(4)

Uð4Þ
1 ¼ w1 �w4 �w13 þw16 ð11aÞ

Uð4Þ
2 ¼ w2 �w3 þw5 �w8 �w9 þw12 �w14 þw15 ð11bÞ

Uð4Þ
3 ¼ w6 �w7 �w10 þw11 ð11cÞ
Basis vectors for subspace S(5A)

Uð5AÞ
1 ¼ w1 �w16 ð12aÞ

Uð5AÞ
2 ¼ w6 �w11 ð12bÞ

Uð5AÞ
3 ¼ w2 þw5 �w12 �w15 ð12cÞ

Uð5AÞ
4 ¼ w3 �w8 þw9 �w14 ð12dÞ
Basis vectors for subspace S(5B)

Uð5BÞ
1 ¼ w4 �w13 ð13aÞ

Uð5BÞ
2 ¼ w7 �w10 ð13bÞ

Uð5BÞ
3 ¼ w3 þw8 �w9 �w14 ð13cÞ

Uð5BÞ
4 ¼ w2 �w5 þw12 �w15 ð13dÞ
Thus, use of group C2v decomposes the vector space of the orig-

inal problem (which is of dimension n ¼ 16) into four subspaces of
dimensions ni ¼ 4; 4; 4; 4f g. On the other hand, use of group C4v

decomposes the problem into six subspaces of dimensions
ni ¼ 3; 1; 1; 3; 4; 4f g. Although the decomposition achieved by
the use of group C4v is of higher degree than that achieved by
the use of group C2v , the more equitable decomposition yielded
by group C2v may very well weigh in favour of the adoption of this
group. For large-scale problems, where parallel processors are
often employed to handle the calculations within the independent
subspaces, a more uniform spread of computational effort across
the various subspaces is particularly desirable.

3.3. Conventional flexibility matrix

In this treatment, we will adopt the flexibility formulation (as
opposed to the stiffness formulation) of the eigenvalue problem.
The conventional flexibility matrix for the 16-node configuration
of Fig. 2(a) consists of elements f i;j (i = 1,2,. . .,16; j = 1,2,. . .,16)),
where f i;j is the vertical deflection at node i due to a unit vertical
force applied at node j.

First consider the situation of a unit vertical force applied at Node
1. Regardless of whether the configuration is a grid, a plate, a cable
net or some other structure, we will have a total of ten distinct ver-
tical deflections (i.e. values of flexibility coefficients) at Nodes 1–16,
owing to the symmetry of the physical configuration. Flexibility
coefficients for a specific problem (a grid, a cable net, a plate, etc.)
can readily be calculated based on an appropriate theory for the
problem in question, hence we will assume these are known quan-
tities. This also allows us to proceed without loss of generality. Let
us denote these (known) flexibility coefficients by a1; a2; :::; a10 as
follows:

f 1; 1 ¼ a1 ð14aÞ

f 2; 1 ¼ f 5; 1 ¼ a2 ð14bÞ

f 3; 1 ¼ f 9; 1 ¼ a3 ð14cÞ
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f 4; 1 ¼ f 13; 1 ¼ a4 ð14dÞ

f 6; 1 ¼ a5 ð14eÞ

f 7; 1 ¼ f 10; 1 ¼ a6 ð14fÞ

f 8; 1 ¼ f 14; 1 ¼ a7 ð14gÞ

f 11; 1 ¼ a8 ð14hÞ

f 12; 1 ¼ f 15; 1 ¼ a9 ð14iÞ

f 16; 1 ¼ a10 ð14jÞ
Nodes 4, 13 and 16 belong to the same permutation set as Node

1. Therefore the effects (i.e. vertical deflections) when the unit ver-
tical force is applied at Node 4, at Node 13 and at Node 16 may be
deduced directly from the results for Node 1.

Next, consider the situation of a unit vertical force applied at
Node 2. From the well-known property of the flexibility matrix
that f i;j ¼ f j;i, and further considerations of symmetry, the vertical
deflections at Nodes 1, 4, 13 and 16 are related to the quantities
in Eq. (14) as follows:

f 1; 2 ¼ f 2; 1 ¼ a2 ð15aÞ

f 4; 2 ¼ f 2; 4 ¼ f 3; 1 ¼ a3 ð15bÞ

f 13; 2 ¼ f 2; 13 ¼ f 8; 1 ¼ a7 ð15cÞ

f 16; 2 ¼ f 2; 16 ¼ f 12; 1 ¼ a9 ð15dÞ
The vertical deflections at the remaining twelve nodes of Fig. 2

(a), resulting from the application of a unit vertical force at Node 2,
will be different from the values in Eq. (14). These flexibility coef-
ficients will be denoted by a11; a12; :::; a21 (all assumed to be
known quantities) as follows:

f 2; 2 ¼ a11 ð16aÞ

f 3; 2 ¼ a12 ð16bÞ

f 5; 2 ¼ a13 ð16cÞ

f 6; 2 ¼ a14 ð16dÞ
A ¼

a1 a2 a3 a4 a2 a5 a6 a7 a3 a6 a8 a9 a4
a2 a11 a12 a3 a13 a14 a15 a16 a16 a17 a18 a19 a7
a3 a12 a11 a2 a16 a15 a14 a13 a19 a18 a17 a16 a9
a4 a3 a2 a1 a7 a6 a5 a2 a9 a8 a6 a3 a1

a2 a13 a16 a7 a11 a14 a17 a20 a12 a15 a18 a21 a3
a5 a14 a15 a6 a14 a22 a23 a17 a15 a23 a24 a18 a6
a6 a15 a14 a5 a17 a23 a22 a14 a18 a24 a23 a15 a8
a7 a16 a13 a2 a20 a17 a14 a11 a21 a18 a15 a12 a9
a3 a16 a19 a9 a12 a15 a18 a21 a11 a14 a17 a20 a2
a6 a17 a18 a8 a15 a23 a24 a18 a14 a22 a23 a17 a5
a8 a18 a17 a6 a18 a24 a23 a15 a17 a23 a22 a14 a6
a9 a19 a16 a3 a21 a18 a15 a12 a20 a17 a14 a11 a7
a4 a7 a9 a10 a3 a6 a8 a9 a2 a5 a6 a7 a1
a7 a20 a21 a9 a16 a17 a18 a19 a13 a14 a15 a16 a2
a9 a21 a20 a7 a19 a18 a17 a16 a16 a15 a14 a13 a3
a10 a9 a7 a4 a9 a8 a6 a3 a7 a6 a5 a2 a4

2
6666666666666666666666666666666664
f 7; 2 ¼ a15 ð16eÞ

f 8; 2 ¼ a16 ð16fÞ

f 9; 2 ¼ f 2; 8 ¼ f 8; 2 ¼ a16 ð16gÞ

f 10; 2 ¼ a17 ð16hÞ

f 11; 2 ¼ a18 ð16iÞ

f 12; 2 ¼ a19 ð16jÞ

f 14; 2 ¼ a20 ð16kÞ

f 15; 2 ¼ a21 ð16lÞ

Nodes 3; 5; 8; 9; 12; 14; 15f g belong to the same permutation
set as Node 2. Therefore the effects (i.e. vertical deflections) when
the unit vertical force is applied at each of these nodes in turn may
be deduced directly from the results for Node 2.

Finally, consider the situation of a unit vertical force applied at
Node 6. The vertical deflections at the central nodes (i.e. Nodes 6, 7,
10 and 11) will be distinct from the values in Eqs. (14) and (16).
These flexibility coefficients will be denoted by a22, a23 and a24

(all assumed to be known quantities) as follows:

f 6; 6 ¼ a22 ð17aÞ

f 7; 6 ¼ f 10; 6 ¼ a23 ð17bÞ

f 11; 6 ¼ a24 ð17cÞ

Nodes 7; 10; 11f g belong to the same permutation set as Node
6. Therefore the effects (i.e. vertical deflections) when the unit ver-
tical force is applied at each of these nodes in turn may be deduced
directly from the results for Node 6.

The remaining flexibility coefficients of the problem follow
from the relationship f i;j ¼ f j;i, where all the f j;i are already defined
above. The 16� 16 conventional flexibility matrix A of the struc-
tural configuration shown in Fig. 2(a) may be fully written out in
terms of the twenty-four distinct values of the flexibility coeffi-
cients as follows:
a7 a9 a10
a20 a21 a9
a21 a20 a7

0 a9 a7 a4
a16 a19 a9
a17 a18 a8
a18 a17 a6
a19 a16 a3
a13 a16 a7
a14 a15 a6
a15 a14 a5
a16 a13 a2
a2 a3 a4
a11 a12 a3
a12 a11 a2
a3 a2 a1

3
7777777777777777777777777777777775

ð18Þ
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3.4. Symmetry adapted flexibility matrices and associated formulation

3.4.1. Concept of a symmetry-adapted flexibility matrix
For the treatment in this section, let us consider any subspace of

dimension r, that is, the subspace is spanned by r independent basis
vectors. (Notice that r has the samemeaning as the ni of Section 3.1,
where in that earlier discussion, the subscript i was used to denote
the number of the subspace.) We define the symmetry-adapted
flexibility coefficient bi;j (i ¼ 1; 2; :::; r; j ¼ 1; 2; :::; r) as the
vertical deflection ensuing at any one of the nodes of the basis
vector Ui as a result of unit vertical forces applied simultaneously
at all the nodes of the basis vector Uj. The collection of all such
coefficients constitutes the symmetry-adapted flexibility matrix B
for that subspace.

For the 16-node structural configuration of Fig. 2(a), and as
already established in Section 3.2, use of symmetry group C2v

results in four independent subspaces of dimensions
r ¼ 4; 4; 4; 4f g, implying that the B matrix is a 4� 4 matrix for
all the subspaces. Use of symmetry group C4v results in six inde-
pendent subspaces of dimensions r ¼ 3; 1; 1; 3; 4; 4f g, so the size
of the B matrix will vary from subspace to subspace, being a 3� 3
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Fig. 3. Vibration analysis of the 16-node dynamic system based on the symmetry grou
vectors: (a) subspace S(1); (b) subspace S(2); (c) subspace S(3); (d) subspace S(4).
matrix for Subspaces Sð1Þ and Sð4Þ, a 1� 1 matrix for Subspaces Sð2Þ

and Sð3Þ, and a 4� 4 matrix for Subspaces Sð5AÞ and Sð5BÞ.

3.4.2. Symmetry-adapted flexibility formulation based on group C2v

Since r ¼ 4 for all four subspaces Sð1Þ, Sð2Þ, Sð3Þ and Sð4Þ, the
symmetry-adapted flexibility matrix for all four subspaces takes
the form

B ¼

b1; 1 b1; 2 b1; 3 b1; 4

b2; 1 b2; 2 b2; 3 b2; 4

b3; 1 b3; 2 b3; 3 b3; 4

b4; 1 b4; 2 b4; 3 b4; 4

2
6664

3
7775 ð19Þ

Considering one subspace at a time, the coefficients of B are
obtained by superimposing the appropriate values of the conven-
tional flexibility coefficients appearing in Eq. (18), in accordance
with the combinations of unit vertical forces of Uj plotted in
Fig. 3, and taking into account the correct sign of the deflection
components (a unit vertical force shown acting downwards causes
positive displacements; a unit vertical force shown acting upwards
causes negative displacements). Noting that the matrix B is sym-
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p C2v : Unit vertical forces applied in accordance with the coordinates of the basis
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metric (bi; j ¼ bj; i), the distinct values of the coefficients of the B
matrix are obtained as follows (the four terms on the right-hand
side represent the deflections at the point in question caused by
each of the four unit loads depicted in the Uj sets of Fig. 3):

Subspace Sð1Þ

b1; 1 ¼ a1 þ a4 þ a4 þ a10 ð20aÞ

b1; 2 ¼ a2 þ a3 þ a7 þ a9 ð20bÞ

b1; 3 ¼ a2 þ a7 þ a3 þ a9 ð20cÞ

b1; 4 ¼ a5 þ a6 þ a6 þ a8 ð20dÞ

b2; 2 ¼ a11 þ a12 þ a20 þ a21 ð20eÞ

b2; 3 ¼ a13 þ a16 þ a16 þ a19 ð20fÞ

b2; 4 ¼ a14 þ a15 þ a17 þ a18 ð20gÞ

b3; 3 ¼ a11 þ a20 þ a12 þ a21 ð20hÞ

b3; 4 ¼ a14 þ a17 þ a15 þ a18 ð20iÞ

b4; 4 ¼ a22 þ a23 þ a23 þ a24 ð20jÞ
Subspace Sð2Þ

b1; 1 ¼ a1 � a4 � a4 þ a10 ð21aÞ

b1; 2 ¼ a2 � a3 � a7 þ a9 ð21bÞ

b1; 3 ¼ a2 � a7 � a3 þ a9 ð21cÞ

b1; 4 ¼ a5 � a6 � a6 þ a8 ð21dÞ

b2; 2 ¼ a11 � a12 � a20 þ a21 ð21eÞ

b2; 3 ¼ a13 � a16 � a16 þ a19 ð21fÞ

b2; 4 ¼ a14 � a15 � a17 þ a18 ð21gÞ

b3; 3 ¼ a11 � a20 � a12 þ a21 ð21hÞ

b3; 4 ¼ a14 � a17 � a15 þ a18 ð21iÞ

b4; 4 ¼ a22 � a23 � a23 þ a24 ð21jÞ
Subspace Sð3Þ

b1; 1 ¼ a1 � a4 þ a4 � a10 ð22aÞ

b1; 2 ¼ a2 � a3 þ a7 � a9 ð22bÞ

b1; 3 ¼ a2 � a7 þ a3 � a9 ð22cÞ

b1; 4 ¼ a5 � a6 þ a6 � a8 ð22dÞ

b2; 2 ¼ a11 � a12 þ a20 � a21 ð22eÞ

b2; 3 ¼ a13 � a16 þ a16 � a19 ð22fÞ

b2; 4 ¼ a14 � a15 þ a17 � a18 ð22gÞ

b3; 3 ¼ a11 � a20 þ a12 � a21 ð22hÞ

b3; 4 ¼ a14 � a17 þ a15 � a18 ð22iÞ

b4; 4 ¼ a22 � a23 þ a23 � a24 ð22jÞ
Subspace Sð4Þ

b1; 1 ¼ a1 þ a4 � a4 � a10 ð23aÞ

b1; 2 ¼ a2 þ a3 � a7 � a9 ð23bÞ

b1; 3 ¼ a2 þ a7 � a3 � a9 ð23cÞ

b1; 4 ¼ a5 þ a6 � a6 � a8 ð23dÞ

b2; 2 ¼ a11 þ a12 � a20 � a21 ð23eÞ

b2; 3 ¼ a13 þ a16 � a16 � a19 ð23fÞ

b2; 4 ¼ a14 þ a15 � a17 � a18 ð23gÞ

b3; 3 ¼ a11 þ a20 � a12 � a21 ð23hÞ

b3; 4 ¼ a14 þ a17 � a15 � a18 ð23iÞ

b4; 4 ¼ a22 þ a23 � a23 � a24 ð23jÞ
From the above, we may make a couple of significant observa-

tions. First, if we compare the sets of expressions for the four sub-
spaces, it is observed that corresponding bi; j expressions across the
subspaces feature the same combination of a terms, differing only
in the signs of the terms. Secondly, the pattern of the signs of the a
terms is uniform within a given subspace, and is consistent with
the symmetry of that subspace. It means that, in practical compu-

tations, the bi; j expressions for subspaces S
ð2Þ, Sð3Þ and Sð4Þ need not

be independently derived; they can simply be deduced directly

from the results for subspace Sð1Þ once the latter have been
obtained.

The diagonal mass matrix M for a given subspace consists of
non-zero diagonal elements mi; i (i = 1,2,. . .,r), which are the values
of the mass at each of the nodes of the basis vector Ui. By reference
to Fig. 3 in conjunction with Fig. 2(b), it is noted that all four sub-
spaces have the same diagonal mass matrix, namely

M ¼

m1 0 0 0
0 m2 0 0
0 0 m2 0
0 0 0 m3

2
6664

3
7775 ð24Þ

For each subspace, the eigenvalues are obtained from the van-
ishing condition

jB� kM�1j ¼ 0 ð25Þ
where k = 1/x2, and x is a natural circular frequency of the system.
Substituting the coefficients of B (as given in generalised form by
Eq. (19)) and the coefficients of M (as given by Eq. (24)) into Eq.
(25), we obtain

b1; 1 �ðk=m1Þð Þ b1; 2 b1; 3 b1; 4

b2; 1 b2; 2 �ðk=m2Þð Þ b2; 3 b2; 4

b3; 1 b3; 2 b3; 3 �ðk=m2Þð Þ b3; 4

b4; 1 b4; 2 b4; 3 b4; 4 �ðk=m3Þð Þ

���������

���������
¼ 0

ð26Þ
This may be expanded into a 4th-degree polynomial (character-

istic equation), which is then solved (using conventional tech-
niques) for four roots (values of k), yielding four natural
frequencies of the system. While the numerical value of the M
matrix will be the same for all the four subspaces, the numerical
value of the B matrix will be different for each subspace, as is clear
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by reference to Eqs. (20)–(23). Thus, the solution sets for the four
subspaces will be different. Solving Eq. (26) for all four subspaces
yields the required 16 natural frequencies of the system.

3.4.3. Symmetry-adapted flexibility formulation based on group C4v

For each of the six subspaces yielded by the symmetry group
C4v , the coefficients of symmetry-adapted flexibility matrix B are
obtained by superimposing the appropriate values of the conven-
tional flexibility coefficients appearing in Eq. (18), in accordance
with the combinations of unit vertical forces of Uj plotted in
Fig. 4, and taking into account the correct sign of the deflection
components. The results for the symmetry-adapted flexibility
matrices of all the six subspaces are as follows:

Subspaces Sð1Þ and Sð4Þ

B ¼
b1; 1 b1; 2 b1; 3

b2; 1 b2; 2 b2; 3

b3; 1 b3; 2 b3; 3

2
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3
75 ð27Þ
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Fig. 4. Vibration analysis of the 16-node dynamic system based on the symmetry grou
vectors: (a) subspace S(1); (b) subspace S(2); (c) subspace S(3); (d) subspace S(4); (e) subs
where

b1; 1 ¼ a1 � a4 þ a10 ð28aÞ

b1; 2 ¼ b2; 1 ¼ 2a2 � 2a3 � 2a7 þ 2a9 ð28bÞ

b1; 3 ¼ b3; 1 ¼ a5 � 2a6 þ a8 ð28cÞ

b2; 2 ¼ a11 � a12 þ a13 � 2a16 þ a19 � a20 þ a21 ð28dÞ

b2; 3 ¼ b3; 2 ¼ a14 � a15 � a17 þ a18 ð28eÞ

b3; 3 ¼ a22 � 2a23 þ a24 ð28fÞ
with the upper sign of the symbols ± or � referring to subspace Sð1Þ

and the lower sign to subspace Sð4Þ.

Subspaces Sð2Þ and Sð3Þ

B ¼ b1; 1½ � ð29Þ
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p C4v : Unit vertical forces applied in accordance with the coordinates of the basis
pace S(5A); (f) subspace S(5B).
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Fig. 4 (continued)
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where

b1; 1 ¼ a11 � a12 � a13 � 2a16 � a19 � a20 þ a21 ð30Þ
with the upper sign of ± or � referring to subspace Sð2Þ, and the
lower sign to subspace Sð3Þ.

Subspaces Sð5AÞ and Sð5BÞ

B ¼

b1; 1 b1; 2 b1; 3 b1; 4

b2; 1 b2; 2 b2; 3 b2; 4

b3; 1 b3; 2 b3; 3 b3; 4

b4; 1 b4; 2 b4; 3 b4; 4

2
6664

3
7775 ð31Þ

where for both subspaces,

b1; 1 ¼ a1 � a10 ð32aÞ
b1; 2 ¼ b2; 1 ¼ a5 � a8 ð32bÞ

b1; 3 ¼ b3; 1 ¼ 2a2 � 2a9 ð32cÞ

b1; 4 ¼ b4; 1 ¼ 2a3 � 2a7 ð32dÞ
b2; 2 ¼ a22 � a24 ð32eÞ

b2; 3 ¼ b3; 2 ¼ 2a14 � 2a18 ð32fÞ

b2; 4 ¼ b4; 2 ¼ 2a15 � 2a17 ð32gÞ

b3; 3 ¼ a11 þ a13 � a19 � a21 ð32hÞ

b3; 4 ¼ b4; 3 ¼ a12 � a20 ð32iÞ

b4; 4 ¼ a11 � a13 þ a19 � a21 ð32jÞ
The diagonal mass matrices for the various subspaces, consist-

ing of non-zero elements mi; i (i = 1,2,. . .,r), are the values of the
mass at each of the nodes of the basis vector Ui. By reference to
Fig. 4 in conjunction with Fig. 2(b), we obtain

For Subspaces Sð1Þ and Sð4Þ

M ¼
m1 0 0
0 m2 0
0 0 m3

2
64

3
75 ð33Þ

For Subspaces Sð2Þ and Sð3Þ

M ¼ m2½ � ð34Þ
For Subspaces Sð5AÞ and Sð5BÞ

M ¼

m1 0 0 0
0 m3 0 0
0 0 m2 0
0 0 0 m2

2
6664

3
7775 ð35Þ

The vanishing condition for eigenvalue determination – Eq. (25)
– becomes

For Subspaces Sð1Þ and Sð4Þ

b1; 1 � ðk=m1Þð Þ b1; 2 b1; 3

b2; 1 b2; 2 � ðk=m2Þð Þ b2; 3

b3; 1 b3; 2 b3; 3 � ðk=m3Þð Þ

�������

�������
¼ 0 ð36Þ

using the values of bi; j (i = 1,2,3; j = 1,2,3) appropriate for each sub-
space, as defined by Eq. (28).

For Subspaces Sð2Þ and Sð3Þ

b1; 1 � ðk=m2Þ ¼ 0 ) k ¼ b1; 1 m2 ð37Þ
using the value of b1; 1 appropriate for each subspace, as defined by
Eq. (30).

For Subspace Sð5AÞ and Sð5BÞ

b1; 1 �ðk=m1Þð Þ b1; 2 b1; 3 b1; 4

b2; 1 b2; 2 �ðk=m3Þð Þ b2; 3 b2; 4

b3; 1 b3; 2 b3; 3 �ðk=m2Þð Þ b3; 4

b4; 1 b4; 2 b4; 3 b4; 4 �ðk=m2Þð Þ

���������

���������
¼ 0

ð38Þ
where for these two subspaces, the parameters bi; j

(i ¼ 1; 2; 3; 4; j ¼ 1; 2; 3; 4) are identical, being given by Eq. (32)
for either subspace. Subspaces Sð5AÞ and Sð5BÞ are a result of the

decomposition of a larger subspace Sð5Þ that is associated with
doubly-repeating roots of k. In problems involving the C4v symme-
try group, only one of subspaces Sð5AÞ and Sð5BÞ need to be considered

in order to generate all the roots of subspace Sð5Þ.



Fig. 5. Layout and dimensions of the numerical example of the 16-node plane grid.

12 A. Zingoni / Computers and Structures 223 (2019) 106101
3.5. Numerical example

Let us consider a horizontal plane grid assembled from eight
aluminium beams of rectangular cross-section 0:05m wide and
0:10m deep. The beams are of length 8:0m ; simply supported at
the ends, and spaced at 2m in both the x and y directions, as shown
in Fig. 5. The beams rigidly intersect at the 16 joints numbered as
shown in the figure. The material, section and elastic properties of
the grid members are as follows:

Young’s modulus of elasticity: E ¼ 70� 106 kN=m2

Density of grid material: q ¼ 2700 kg=m3

Poisson’s ratio: m ¼ 0:32
Cross-sectional area: A ¼ 5� 10�3 m2

Second moment of area: I ¼ 4:16667� 10�6 m4

Flexural rigidity: EI ¼ 291:667 kNm2

We are interested in the small transverse vibrations of the grid,
assuming that all the mass of the members and associated attach-
ments is lumped at the 16 member intersections (nodes). First, we
need to obtain the flexibility coefficients of the grid. The vertical
Table 1
Vertical deflections (in millimetres) at the 16 nodes of the grid due to a unit vertical
load of 1 kN applied at node 1, at node 2 and at node 6 (one unit load at a time).

Node at which unit load is
applied

1 2 6

Node at which vertical
deflection is measured

1 0.97 0.84 1.35
2 0.84 2.16 3.03
3 0.38 1.32 2.49
4 0.12 0.38 0.89
5 0.84 1.35 3.03
6 1.35 3.03 7.13
7 0.89 2.49 5.7
8 0.29 0.89 2.05
9 0.38 0.89 2.49
10 0.89 2.05 5.7
11 0.78 1.95 5.09
12 0.29 0.78 1.95
13 0.12 0.29 0.89
14 0.29 0.71 2.05
15 0.29 0.71 1.95
16 0.12 0.29 0.78
(i.e. transverse) deflections at each of the 16 nodes of the grid,
when a unit vertical force of 1 kN is applied at nodes 1, 2 and 6
in turn (these three locations being representative of all 16 nodes
owing to symmetry), may readily be obtained from a conventional
linear-elastic analysis of the grid. The results are shown in Table 1,
where the values of the deflections are in millimetres (i.e. 10�3 m).
The deflection parameters of the problem a1; a2; :::; a24f g are eval-
uated from the flexibility coefficients as defined by Eqs. (14)–(17),
giving the results (in units of 10�3 m=kN):

a1 ¼ f 1; 1 ¼ 0:97;a2 ¼ f 2; 1 ¼ 0:84;a3 ¼ f 3; 1 ¼ 0:38;a4 ¼ f 4; 1 ¼ 0:12

a5 ¼ f 6; 1 ¼ 1:35;a6 ¼ f 7; 1 ¼ 0:89;a7 ¼ f 8; 1 ¼ 0:29;a8 ¼ f 11; 1 ¼ 0:78

a9 ¼ f 12; 1 ¼ 0:29;a10 ¼ f 16; 1 ¼ 0:12;a11 ¼ f 2; 2 ¼ 2:16;a12 ¼ f 3; 2 ¼ 1:32

a13 ¼ f 5; 2 ¼1:35;a14 ¼ f 6; 2 ¼3:03;a15 ¼ f 7; 2 ¼2:49;a16 ¼ f 8; 2 ¼0:89

a17 ¼ f 10; 2 ¼ 2:05;a18 ¼ f 11; 2 ¼ 1:95;a19 ¼ f 12; 2 ¼ 0:78;a20 ¼ f 14; 2 ¼ 0:71

a21 ¼ f 15; 2 ¼ 0:71;a22 ¼ f 6; 6 ¼ 7:13;a23 ¼ f 7; 6 ¼ 5:70;a24 ¼ f 11; 6 ¼ 5:09

Let us illustrate the group-theoretic computational steps by
applying symmetry group C2v to our numerical example.
The symmetry-adapted flexibility matrix for each of the four
subspaces of the problem takes the form given by Eq. (19),
where the symmetry-adapted flexibility coefficients bi; j

(i ¼ 1; 2; 3; 4; j ¼ 1; 2; 3; 4) for each subspace are linear combi-
nations of the deflection parameters as given by Eqs. (20)–(23).
Evaluating the bi; j for all four subspaces of the problem, we obtain
the following results for the symmetry-adapted flexibility matrices
Bð1Þ, Bð2Þ, Bð3Þ and Bð4Þ for subspaces Sð1Þ, Sð2Þ, Sð3Þ and Sð4Þ respectively,
with the units of the flexibility coefficients being 10�3 m=kN:

Bð1Þ ¼

1:33 1:80 1:80 3:91
1:80 4:90 3:91 9:52
1:80 3:91 4:90 9:52
3:91 9:52 9:52 23:62

2
6664

3
7775;Bð2Þ ¼

0:85 0:46 0:46 0:35
0:46 0:84 0:35 0:44
0:46 0:35 0:84 0:44
0:35 0:44 0:44 0:82

2
6664

3
7775

Bð3Þ ¼

0:85 0:46 0:64 0:57
0:46 0:84 0:57 0:64
0:64 0:57 2:06 1:52
0:57 0:64 1:52 2:04

2
6664

3
7775;Bð4Þ ¼

0:85 0:64 0:46 0:57
0:64 2:06 0:57 1:52
0:46 0:57 0:84 0:64
0:57 1:52 0:64 2:04

2
6664

3
7775

Let us assume all the mass of the dynamic system stems only
from the mass of the grid members, which we will lump at the
nodes of the grid. From the layout in Fig. 5, a grid spacing of 2m
implies that 4m of member length is supported by each node.
The concentrated mass mn at each node (n ¼ 1; 2; :::; 16), given
that the member cross-sectional area is 0:005 m2 and the density

of aluminium is 2700 kg=m3, is therefore 54kg: Each of the four
subspaces of the problem has the same diagonal mass matrix given
by Equation (24). In the present example, all nodal masses have a

value of 54kg; so the mass matrix for each subspace SðiÞ

(i ¼ 1; 2; 3; 4) is given by

MðiÞ ¼

54 0 0 0
0 54 0 0
0 0 54 0
0 0 0 54

2
6664

3
7775

with the units of the diagonal elements being kilograms. Eigenvalues
for each subspace are evaluated on the basis of Eq. (26), using the bi; j
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values (i ¼ 1; 2; 3; 4; j ¼ 1; 2; 3; 4) for the subspace in question,
and the mi; i values (i ¼ 1; 2; 3; 4) of 54 kg. The eigenvectors W for
each subspace then follow from the subspace eigenvalue equation

BðiÞ
h i

� k MðiÞ
h i�1

� �
Wf g ¼ 0f g ð39Þ

The results for eigenvalues k, natural frequencies of vibration
f ¼ 1= 2pk0:5

	 
� �
and eigenvectors W, obtained for each subspace,

are as follows:

Subspaces Sð1Þ

k1 ¼ 1:7432 k2 ¼ 0:02760 k3 ¼ 0:05219 k4 ¼ 0:05346

f 1 ¼ 0:121 Hz f 2 ¼ 0:958 Hz f 3 ¼ 0:697 Hz f 4 ¼ 0:688 Hz

W1 ¼
0:175
0:418
0:418
1:000

8>><
>>:

9>>=
>>;

W2 ¼
1:000
�0:415
�0:415
0:174

8>><
>>:

9>>=
>>;

W3 ¼
�0:994
�0:986
�0:986
1:000

8>><
>>:

9>>=
>>;

W4 ¼
0:000
�1:000
1:000
0:000

8>><
>>:

9>>=
>>;

Subspaces Sð2Þ

k1 ¼ 0:1127 k2 ¼ 0:01552 k3 ¼ 0:02617 k4 ¼ 0:02646

f 1 ¼ 0:474 Hz f 2 ¼ 1:278 Hz f 3 ¼ 0:984 Hz f 4 ¼ 0:978 Hz

W1 ¼
1:000
0:982
0:982
0:957

8>><
>>:

9>>=
>>;

W2 ¼
1:000
�0:973
�0:973
0:951

8>><
>>:

9>>=
>>;

W3 ¼
�0:953
�0:001
�0:001
1:000

8>><
>>:

9>>=
>>;

W4 ¼
0:000
�1:000
1:000
0:000

8>><
>>:

9>>=
>>;

Subspaces Sð3Þ

k1 ¼ 0:2211 k2 ¼ 0:04214 k3 ¼ 0:01926 k4 ¼ 0:03014

f 1 ¼ 0:338 Hz f 2 ¼ 0:775 Hz f 3 ¼ 1:147 Hz f 4 ¼ 0:917 Hz

W1 ¼
0:433
0:432
1:000
0:994

8>><
>>:

9>>=
>>;

W2 ¼
1:000
0:980
�0:444
�0:415

8>><
>>:

9>>=
>>;

W3 ¼
�0:974
1:000
0:393
�0:405

8>><
>>:

9>>=
>>;

W4 ¼
�0:409
0:394
�0:986
1:000

8>><
>>:

9>>=
>>;

Subspaces Sð4Þ

k1 ¼ 0:2211 k2 ¼ 0:04214 k3 ¼ 0:01926 k4 ¼ 0:03014

f 1 ¼ 0:338 Hz f 2 ¼ 0:775 Hz f 3 ¼ 1:147 Hz f 4 ¼ 0:917 Hz

W1 ¼
0:433
1:000
0:432
0:994

8>><
>>:

9>>=
>>;

W2 ¼
1:000
�0:444
0:980
�0:415

8>><
>>:

9>>=
>>;

W3 ¼
�0:974
0:393
1:000
�0:405

8>><
>>:

9>>=
>>;

W4 ¼
�0:409
�0:986
0:394
1:000

8>><
>>:

9>>=
>>;
The subspace eigenvalues and natural frequencies are also the
eigenvalues and natural frequencies of the original problem. A for-
mal proof of this may be seen in older literature on applications of
group theory to physical problems [1]. However, subspace eigen-
vectors are only eigenvectors in the 4-dimensional space of the
subspace in question. To convert these to eigenvectors in the 16-
dimensional vector space of the original problem, we allocate the
calculated ordinate of the subspace eigenvector to all the grid notes
of the associated basis vector (see Eqs. (4)–(7)), with the signs (pos-
itive or negative) of the allocations being in accordance with the
signs of the basis-vector terms.

As an example, consider the first eigenvector W1 of subspace

Sð1Þ. We want to convert this into an eigenvector in the full space
of the original problem. We note that the ordinates of W1 are
0:175; 0:418; 0:418; 1:000f g. Looking at Eq. (4), we see that there

are four basis vectors Uð1Þ
1 , Uð1Þ

2 , Uð1Þ
3 and Uð1Þ

4 spanning the subspace

Sð1Þ, and these are associated with the grid nodal sets
1; 16; 13; 4f g, 2; 15; 14; 3f g, 5; 12; 9; 8f g and 6; 11; 10; 7f g
respectively, given by the numerical subscripts of the wi. Eigenval-
ues in the full vector space of the original problem are obtained by
allocating the value þ0:175 to nodes 1; 16; 13; 4f g, the value
þ0:418 to nodes 2; 15; 14; 3f g, the value þ0:418 to nodes
5; 12; 9; 8f g, and the value þ1:000 to nodes 6; 11; 10; 7f g, the
value for each node i being the ordinate of W1 multiplied by the
sign of the associated wi (i.e. multiplied by þ1, since all the wi in
Eq. (4) have positive signs).

The values allocated in the above manner are the relative dis-
placement ordinates U1 of the 16 nodes of the grid which, when
viewed together, give the mode shape corresponding to the first

eigenvector W1 of subspace Sð1Þ. Written as a column vector, U1 is
therefore 16-dimensional. Allocating W2, W3 and W4 in the same

manner generates modes U2, U3 and U4 of subspace Sð1Þ. Thus, each
of the four subspaces yields four modes of vibration
U1; U2; U3; U4f g, and the four subspaces taken together yield the
16 modes of vibration of the grid. The full sets of results (i.e. rela-
tive displacement ordinates) for all 16 modes of vibration of the
grid are shown in Table 2, and plotted as Figs. 6–9. From the plots,
it is clear that modes belonging to the same subspace have the
same patterns (i.e. symmetry type), and these patterns differ from
one subspace to another.

The results for the frequencies clearly show that subspaces Sð2Þ

and Sð3Þ yield identical sets of frequencies, whereas the sets of fre-
quencies for subspaces Sð1Þ and Sð4Þ are different from each other

and from those of sets Sð2Þ and Sð3Þ. Thus, the grid has 4 doubly-
occurring and 8 singly-occurring frequencies, giving 12 distinct
frequencies in total. Here, another computational merit of group-
theoretic decomposition becomes evident. By computing the fre-
quencies in separate subspaces, the group-theoretic approach
bypasses the numerical problems usually associated with solving
for roots (eigenvalues) that coincide with each other, or that are
too close to each other.

It should be noted that the point of group-theoretic calculations
is not to obtain greater accuracy; rather, it is about simplifying
computations through subspace decomposition; group theory also
allows us to gain insights on physical behaviour that is peculiar to
symmetric structures. In itself, group-theoretic decomposition is a
mathematically exact process, therefore as long as the basic struc-
tural theory is correct, the results of group-theoretic simplifica-
tions will also be correct.

As already seen in Section 3.2, if symmetry group C4v had been
used, the two subspaces with identical roots would be known right
from the outset, necessitating the consideration of only one of
these to yield the 4 doubly-occurring frequencies. For this problem,
the symmetry group C4v would be the better one to use from a



Table 2
Relative displacement ordinates of the 16 nodes of the grid, defining the 16 modes of vibration of the grid. Each symmetry subspace is associated with four modes of vibration
U1 ; U2; U3; U4f g.

Node Subspace Sð1Þ Subspace Sð2Þ Subspace Sð3Þ Subspace Sð4Þ

U1 U2 U3 U4 U1 U2 U3 U4 U1 U2 U3 U4 U1 U2 U3 U4

1 0.175 1.000 �0.994 0.000 1.000 1.000 �0.953 0.000 0.433 1.000 �0.974 �0.409 0.433 1.000 �0.974 �0.409
2 0.418 �0.415 �0.986 �1.000 0.982 �0.973 �0.001 �1.000 0.432 0.980 1.000 0.394 1.000 �0.444 0.393 �0.986
3 0.418 �0.415 �0.986 �1.000 �0.982 0.973 0.001 1.000 �0.432 �0.980 �1.000 �0.394 1.000 �0.444 0.393 �0.986
4 0.175 1.000 �0.994 0.000 �1.000 �1.000 0.953 0.000 �0.433 �1.000 0.974 0.409 0.433 1.000 �0.974 �0.409
5 0.418 �0.415 �0.986 1.000 0.982 �0.973 �0.001 1.000 1.000 �0.444 0.393 �0.986 0.432 0.980 1.000 0.394
6 1.000 0.174 1.000 0.000 0.957 0.951 1.000 0.000 0.994 �0.415 �0.405 1.000 0.994 �0.415 �0.405 1.000
7 1.000 0.174 1.000 0.000 �0.957 �0.951 �1.000 0.000 �0.994 0.415 0.405 �1.000 0.994 �0.415 �0.405 1.000
8 0.418 �0.415 �0.986 1.000 �0.982 0.973 0.001 �1.000 �1.000 0.444 �0.393 0.986 0.432 0.980 1.000 0.394
9 0.418 �0.415 �0.986 1.000 �0.982 0.973 0.001 �1.000 1.000 �0.444 0.393 �0.986 �0.432 �0.980 �1.000 �0.394
10 1.000 0.174 1.000 0.000 �0.957 �0.951 �1.000 0.000 0.994 �0.415 �0.405 1.000 �0.994 0.415 0.405 �1.000
11 1.000 0.174 1.000 0.000 0.957 0.951 1.000 0.000 �0.994 0.415 0.405 �1.000 �0.994 0.415 0.405 �1.000
12 0.418 �0.415 �0.986 1.000 0.982 �0.973 �0.001 1.000 �1.000 0.444 �0.393 0.986 �0.432 �0.980 �1.000 �0.394
13 0.175 1.000 �0.994 0.000 �1.000 �1.000 0.953 0.000 0.433 1.000 �0.974 �0.409 �0.433 �1.000 0.974 0.409
14 0.418 �0.415 �0.986 �1.000 �0.982 0.973 0.001 1.000 0.432 0.980 1.000 0.394 �1.000 0.444 �0.393 0.986
15 0.418 �0.415 �0.986 �1.000 0.982 �0.973 �0.001 �1.000 �0.432 �0.980 �1.000 �0.394 �1.000 0.444 �0.393 0.986
16 0.175 1.000 �0.994 0.000 1.000 1.000 �0.953 0.000 �0.433 �1.000 0.974 0.409 �0.433 �1.000 0.974 0.409

Fig. 6. Modes associated with subspace S(1) of the numerical example of the 16-node plane grid, derived on the basis of symmetry group C2v .

Fig. 7. Modes associated with subspace S(2) of the numerical example of the 16-node plane grid, derived on the basis of symmetry group C2v .

Fig. 8. Modes associated with subspace S(3) of the numerical example of the 16-node plane grid, derived on the basis of symmetry group C2v .
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Fig. 9. Modes associated with subspace S(4) of the numerical example of the 16-node plane grid, derived on the basis of symmetry group C2v .
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computational viewpoint (but see the comments in the next
section).

3.6. Final remarks on the 16-node dynamic system

We have seen how use of group C2v decomposes the vector
space of the configuration of Fig. 2(a) (which is of dimension
n ¼ 16) into four subspaces of dimensions ni ¼ 4; 4; 4; 4f g. On
the other hand, use of group C4v has decomposed the problem into
six subspaces of dimensions ni ¼ 3; 1; 1; 3; 4; 4f g. The eigenvalue
problem has been formulated on the basis of these two symmetry
groups, and the computational merits of each clearly illustrated by
setting up the equations for the extraction of all 16 eigenvalues (i.e.
natural frequencies of vibration) of the system.

As remarked earlier, the decomposition achieved by the use of
group C4v is of higher degree than that achieved by the use of
group C2v , but the more uniform decomposition afforded by group
C2v maymake it a better choice for large-scale problems where it is
desired to split the computations evenly across a number of paral-
lel processors. However, there are also other factors to take into
account. In the next section, we will extend the discussion to other
symmetry groups, and propose a quantitative criterion for the
selection of the most optimal symmetry group.

4. Criterion for best choice of symmetry group

Now the total computational effort involved in obtaining the
solutions (matrix multiplications, evaluation of determinants, find-
ing the roots of polynomial equations, numerical integrations, etc.)
may be taken as generally proportional to n3, where n is the dimen-
sion (or the total number of unknowns) of the full space of the
problem. A measure of the computational benefit of group-
theoretic decomposition is thus given by the ratio

P
n3
i =n

3, where

ni (i ¼ 1; 2; :::; k) is the dimension of subspace SðiÞ of the problem,
and k is the number of independent subspaces yielded by the use of
a particular symmetry group. Given a number of possible symme-
try groups (such as Oh, O, D4h, D2h, C4v , C2v and C1v in the case of a
cubic configuration), the most appropriate symmetry group is that
which results in the smallest value of the ratio

P
n3
i =n

3.
Let us apply this criterion to the 16-node example of Section 3

(where n ¼ 16), for which group C2v decomposed the vector space
of the problem into four subspaces of dimensions ni ¼ 4; 4; 4; 4f g
while group C4v decomposed the problem into six subspaces of
dimensions ni ¼ 3; 1; 1; 3; 4; 4f g. Noting that only one of the 4-
dimensional subspaces of group C4v needs to be considered in an
analysis (since the two 4-dimensional subspaces yield identical
solutions), we obtain for the computational ratio

P
n3
i

� �
=n3:

C2v :
1

163 43 þ 43 þ 43 þ 43
� �

¼ 256
4096

¼ 0:0625

C4v :
1

163 33 þ 13 þ 13 þ 33 þ 43
� �

¼ 120
4096

¼ 0:0293
For this example of a system with C4v symmetry and 16 degrees
of freedom, use of the symmetry group C4v , with the smaller ratio
of 0.0293, is therefore more computationally efficient than use of
its subgroup C2v . If advantage had not been taken of the identical
nature of the two 4-dimensional subspaces of group C4v , the com-
putational ratio for group C4v would have been

C4v :
1

163 33 þ 13 þ 13 þ 33 þ 43 þ 43
� �

¼ 184
4096

¼ 0:0449

The group C4v would still remain the more computationally
efficient.
5. Application to the octahedral group Oh

Let us focus attention on the cubic configuration of Fig. 1(d),
whose eight nodes and associated sets of nodal vectors conform
to the symmetry group Oh. The basis vectors of the subspaces of
symmetry groups Oh, O, D4h, D2h, C4v , C2v and C1v are obtained fol-
lowing the procedure explained in Section 3, by applying the idem-
potents of these symmetry groups upon nodal vector sets
w1; w2; :::; w8 associated with nodes 1; 2; :::; 8. The nodal vector
sets are the sets of degrees of freedom at each node (e.g. w1 may
represent the three orthogonal displacements u1; v1; w1f g at Node
1). Let us consider the simple situation where a node is associated
with only one degree of freedom, i.e. the displacement along the
line joining the node to the centre of the cube. The dimension of
the full vector space (i.e. the number of basis vectors spanning
the space) of the cubic configuration is given by n ¼ 8. For the sym-
metry group Oh and its subgroups, group-theoretic decomposition
yields the dimensions ni of the associated subspaces as follows:

Group O: 5 Subspaces: ni ði ¼ 1; 2; :::; 5Þ = 1, 1, 0, 3, 3
Group D4h: 10 Subspaces: ni ði ¼ 1; 2; :::; 10Þ = 1, 0, 0, 1, 2(1,1),
0, 1, 1, 0, 2(1,1)
Group D2h: 8 Subspaces: ni ði ¼ 1; 2; :::; 8Þ = 1, 1, 1, 1, 1, 1, 1, 1
Group C4v : 5 Subspaces: ni ði ¼ 1; 2; :::; 5Þ = 2, 0, 0, 2, 4(2,2)
Group C2v : 4 Subspaces: ni ði ¼ 1; 2; 3; 4Þ = 2, 2, 2, 2
Group C1v : 2 Subspaces: ni ði ¼ 1; 2Þ = 4, 4

For groupsD4h and C4v , the numbers in brackets denote degener-
ation of each 2-dimensional subspace into two 1-dimensional sub-
spaces with identical solutions, and degeneration of the 4-
dimensional subspace into two 2-dimensional subspaceswith iden-
tical solutions, a beneficial consequence of the existence of repeat-
ing solutions in these subspaces. For these subspaces, only one of
the two degenerate subspaces with identical solutions need to be
considered, which reduces computational effort even further. For
the null subspaces (i.e. those subspaces forwhichni is zero), no com-
putations are required because no solutions (i.e. eigenvalues in the
case of vibration problems) lie in these subspaces. In the computa-
tions below, the zero values for the null subspaces will be retained
for the sake of clarity, but clearly they do not affect the results.
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Applying our criterion to the above groups, and considering
only one of the two degenerate subspaces with identical solutions
in the case of groups D4h and C4v , we obtain for

P
n3
i

� �
=n3

O :
1
83 13 þ 13 þ 0þ 33 þ 33

� �
¼ 56

512
¼ 0:1094

D4h :
1
83 13 þ 0þ 0þ 13 þ 13 þ 0þ 13 þ 13 þ 0þ 13

� �
¼ 6

512
¼ 0:0117

D2h :
1
83 13 þ 13 þ 13 þ 13 þ 13 þ 13 þ 13 þ 13

� �
¼ 8

512
¼ 0:0156

C4v :
1
83 23 þ 0þ 0þ 23 þ 23

� �
¼ 24

512
¼ 0:0469

C2v :
1
83 23 þ 23 þ 23 þ 23

� �
¼ 32

512
¼ 0:0625

C1v :
1
83 43 þ 43

� �
¼ 128

512
¼ 0:2500

Thus, the symmetry group D4h, with the lowest value (0.0117)
of the ratio

P
n3
i =n

3, is the most computationally efficient for this
particular problem of an 8 d.o.f. cubic configuration with octahe-
dral symmetry, followed by symmetry group D2h with the compu-
tational ratio of 0.0156. It should be noted that if advantage had
not been taken of the degenerate nature of one subspace of the
symmetry group D4h, the computational ratio for the symmetry
group D4h would have worked out at 0.0391, thus making the sym-
metry group D2h the most efficient.

6. Summary and conclusions

In this paper, we have illustrated, on the basis of symmetry
groups C2v and C4v , the procedure for determining the dimensions
of the subspaces for a given physical problem, prior to performing
any detailed calculations. For discrete models of dynamic systems
undergoing small transverse vibrations (such as plane grids, space
grids, cable nets and plates), we have presented a rigorous proce-
dure for the derivation of subspace flexibility matrices from an
arbitrary set of conventional flexibility coefficients. This procedure
can easily be programmed for numerical implementation.

To illustrate the application of the method to a real vibration
problem, including the computational steps involved, a numerical
example of the small transverse vibrations of a 16-node plane grid
has been considered, and the symmetry group C2v applied to com-
pute all 16 natural frequencies and 16 mode shapes of the system.
The analysis has revealed the existence of doubly-occurring fre-
quencies, and highlighted yet another merit of the group-
theoretic method: by computing frequencies in separate and inde-
pendent subspaces, the procedure bypasses the numerical prob-
lems usually associated with solving for eigenvalues that
coincide with each other, or that are too close to each other.

For the widely applicable case study of the 16-node plane con-
figuration undergoing small transverse vibrations, it has been
found that the decomposition achieved by the use of group C4v is
of higher degree than that achieved by the use of group C2v . How-
ever, the more uniform decomposition afforded by group C2v may
make it a better choice for large-scale problems where it is desired
to split the computations as evenly as possible across a number of
parallel processors.

Considerations have been extended to more general circum-
stances. In situations where more than one symmetry group is
applicable (typically physical systems with complex symmetry),
a simple criterion for the identification of the most efficient sym-
metry group has been proposed, and applied to the case of an 8
d.o.f. cubic configuration with octahedral symmetry. For this
example, it has been shown that the group D4h is the most efficient,
and hence the most appropriate for computational purposes, fol-
lowed by group D2h. If advantage is not taken of the degenerate
nature of one subspace of the group D4h, the group D2h, with its
eight 1-dimensional subspaces, becomes the most efficient, fol-
lowed by the group D4h. Groups O, C4v , C2v and C1v do not decom-
pose the problem sufficiently, and are thus not very efficient.

In this treatment, we have chosen to illustrate the group-
theoretic computational procedure by reference to problems that
have a relatively small number of unknowns or degrees of freedom,
to allow the reader to follow the steps more easily. It should be
pointed out that these group-theoretic computational steps, as
well as the criterion that has been proposed for identifying the best
symmetry group, are also applicable to large-scale problems, as
long as the configurations have symmetry properties that can be
identified with known symmetry groups. The treatment has inher-
ently assumed that one is already aware of the various symmetry
groups that are applicable to a particular problem, and that it is
just a question of deciding which one is the most applicable group
to adopt in an analysis. For many configurations encountered in
real engineering situations, the possible symmetry groups are
clearly evident from a simple visual inspection of the symmetry
properties of the configuration (number and orientation of reflec-
tion planes, rotation axes, etc.), but in the case of more complex
configurations where the symmetry groups are not so obvious,
more systematic procedures for identifying symmetry properties
and all possible symmetry groups are available in the literature
[52–55].

In general, the most efficient symmetry group for a given struc-
tural configuration depends on the number and arrangement of
nodes and members, as well as the number and arrangement of
degrees of freedom of the problem, including how the nodes and
members are arranged with respect to the axes of symmetry and
reflection planes of the configuration.

In summary, the present study has illustrated in detail the pro-
cedure for determining the dimensions of the various subspaces of
a given physical problem, prior to performing any detailed calcula-
tions, as well as the steps involved in computing actual frequencies
and mode shapes. Where a number of alternative symmetry
groups are possible, a rational criterion for selecting the most com-
putationally efficient symmetry group, prior to any detailed com-
putations, has been proposed for the first time. This is the main
achievement of this contribution.
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