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Shallow cable nets may be coupled into multi-layer configurations that are stiffer and stronger than 

single-layer configurations. In a previous study, group theory was used to investigate double-layer cable 

nets of D 4h symmetry by reference to a 32-node case study, revealing key insights on their vibration char- 

acteristics. In this paper, and as an extension of the previous work, we present a rigorous group-theoretic 

formulation for the computation of natural frequencies and mode shapes of double-layer cable nets of 

D 4h symmetry, by reference to the same case study. The analysis reveals the existence of transverse- 

extension modes that are unique to coupled cable-net configurations, at the same time demonstrating 

the substantial computational benefits of the group-theoretic procedure. A numerical example is consid- 

ered in order to illustrate how the eigenvalues and eigenmodes of the problem are actually calculated, 

providing further insights on the vibration behaviour of the cable net. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Cable nets may be formed by prestressing a set of cables run-

ning in one direction against another set of cables running in

the perpendicular direction, with the two systems of cables being

curved in opposite directions. Such a system is very capable of re-

sisting external loads, with the stiffness of the structure being very

much a function of the tensile forces in the individual cables. 

Cable nets find application as lightweight roofing systems for

long spans ( Irvine, 1981; Szabo and Kollar, 1984; Vilnay, 1990 ).

They are usually shallow, with the vertical rise (or fall) of the net

being relatively small in comparison with the lateral dimensions

of the net. For present purposes, we will consider cable nets as

shallow if the rise-to-span ratio is less than 1/5. For such shal-

low nets, the reference plane for transverse motions may be taken

as horizontal. In the present study, which follows on earlier work

( Zingoni, 2018 ), we are interested in the small transverse motions

(i.e. vertical vibrations) of shallow cable nets, where one set of ca-

bles is assumed to run in the x coordinate direction and the other

set of cables is assumed to run in the y coordinate direction, with

the transverse direction being vertical and denoted by the z axis. 

Following the assumptions of the earlier study ( Zingoni, 2018 ),

the motion of the cable net is represented by discrete masses lo-

cated at the intersections of the cables, and the cables are assumed

to have tensile stiffness but no mass. All the mass of the cables

(and any additional mass due to fittings) is lumped at the nodes
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f the cable net. Lumped-parameter modelling is, of course, not as

xact as distributed-parameter modelling, but for the purposes of

aining important insights on the key features of the vibration re-

ponse of the system, it is adequate. Other assumptions that we

ill make are that the tensions in the cables are relatively large,

nd the transverse displacements of the cable net remain relatively

mall during vibration, so that the magnitudes of the tensile forces

n the cables do not change appreciably during the motion. More-

ver, the friction between the cables at their intersections is con-

idered to be negligible, so that the tensile force in a given cable

emains practically constant throughout its length. These linear as-

umptions can be realised to a very good degree in many practical

ituations. 

Here, we are interested in cable nets that possess symme-

ry properties, which are quite abundant in practice. Symmetry

as an influence on the static and kinematic behaviour of struc-

ures ( Zingoni et al., 1995; Kangwai et al., 1999; Kangwai and

uest, 1999, 20 0 0; Fowler and Guest, 20 0 0; Guest and Fowler,

007; Chen et al., 2015 ), and special methods employed to anal-

se this behaviour include those based on graph theory and its

ariants ( Kaveh and Rahami, 2004; Kaveh and Nikbakht, 2007;

aveh and Koohestani, 2008; Kaveh and Nikbakht, 2010; Chen

nd Feng, 2016 ), and those based on group theory ( Healey, 1988;

lokovic, 1989; Ikeda and Murota, 1991; Healey and Treacy, 1991;

ingoni, 1996; Mohan and Pratap, 20 04; Zingoni, 20 05; Zingoni,

008; Chen and Feng, 2012; Zingoni, 2012; Harth and Michel-

erger, 2016 ). Group theory is particularly suited to the study of

hysical systems possessing multiple symmetry properties, and has

een particularly fruitful in physics and chemistry ( Weyl, 1932;
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igner, 1959; Hamermesh, 1962; Schonland, 1965 ). Within engi-

eering mechanics, group theory has been extensively employed

o simply the analysis of problems of the statics, kinematics, vibra-

ion, stability and bifurcation of structures ( Zingoni, 2009 ). Such

tudies have included, among others, previous work of the au-

hor on the vibration of single-layer cable nets ( Zingoni, 1996 )

nd double-layer space grids ( Zingoni, 2005 ) of C nv symmetry,

nd on the determination of natural frequencies for rectilinear

pring-mass dynamic systems that can be transformed into equiv-

lent C nv systems ( Zingoni, 2008 ). Group-theoretic ideas have been

xploited by other investigators to tackle the problem of the

orced vibration response of spring-mass models of C nv symmetry

 Kaveh and Jahanmohammadi, 2008 ), and the linear vibration anal-

sis of shells with dihedral symmetry ( Mohan and Pratap, 2002 ).

roup theory has also been shown to provide valuable insights

n structural behaviour ( Zingoni, 2014; Chen et al., 2015 ), before

ny numerical computations are performed. Furthermore, group-

heoretic formulations have been developed for numerical applica-

ions such as the finite-difference analysis of plates ( Zingoni, 2012 )

nd the finite-element analysis of skeletal and continuum struc-

ures ( Zingoni, 1996, 2005 ). Symmetry is not always easy to

dentify in complex structures, so some studies have been directed

owards developing procedures for the automatic recognition of

ymmetry ( Suresh and Sirpotdar, 2006; Zingoni, 2012; Chen et al.,

017, 2018 ). 

Some remarks on the validity of the physical model adopted

ere are in order. Although cable nets are generally considered

o be geometrically non-linear structures and usually analysed as

uch ( Siev, 1963; Otto, 1966; Buchholdt et al., 1968 ), their load-

eformation response may be nearly linear under certain condi-

ions, permitting a linear analysis. Even if this is not exactly the

ase, essentially linear techniques may be used to overcome the

on-linear effects ( Calladine, 1982; Pellegrino and Calladine, 1984;

ilnay and Rogers, 1990 ). In our present treatment, the modelling

f cable-net behaviour has been kept very simple, even within the

ontext of linear theory itself, in order to keep the focus on sym-

etry and its effects. The intention is not to present a refined

odel of cable-net behaviour; rather, it is to study the effects and

mplications of symmetry, for which a simple physical model of

he cable net suffices. In any case, the cable net is assumed to be

hallow and highly tensioned, with the amplitude of the free verti-

al vibrations remaining small throughout, conditions under which

he behaviour of the cable net is reasonably linear. 

The vibration of single-layer cable nets with horizontal projec-

ions of C 2 v and C 4 v symmetries (i.e. the symmetries of a rect-

ngle and a square respectively) have been studied in a previ-

us paper ( Zingoni, 1996 ). Group theory enabled vibration modes

aving coincident frequencies to be identified, and other predic-

ions (such as the existence of stationary nodes and nodal lines)

o be made. In the current work, we employ group theory to study

he vibration characteristics of double-layer cable nets belonging to

he symmetry group D 4 h . Such cable nets may be formed by cou-

ling (in the vertical direction) two single-layer cable nets of C 4 v 
ymmetry. Of interest here are extensible couplings whose axial

tiffness may be modelled by vertical springs. Coupling of shal-

ow cable nets into double-layer configurations offers the possi-

ility of altering the load-carrying and dynamic characteristics of

ingle-layer systems in a beneficial way. However, the higher-order

ymmetry of the D 4 h configuration complicates the vibration re-

ponse of the cable net. Group theory becomes particularly useful

or unravelling the complexities and better understanding the dy-

amic response. 

Like the vibrating particles of a layered crystal structure with

rthorhombic ( D 2 h ), tetragonal ( D 4 h ) or cubic ( O h ) symmetry, lay-

red cable nets of D nh symmetry exhibit transverse extensional

odes (i.e. expansion and contraction of the vertical distance be-
ween layers) which are irrelevant in the case of single-layer ca-

le nets and other single-layer structures that have been studied in

he past. In the case of double-layer cable nets of present interest,

he spring-like coupling between the two layers permits the upper

nd lower layers of the cable net to move independently of each

ther, thus doubling the total number of system degrees of free-

om, in comparison with single-layer cable nets (or rigidly con-

ected double-layer cable nets whose layers move up and down

ogether). 

It is the occurrence of these additional extensional modes (or

breathing” modes) that distinguishes the present study from the

revious one ( Zingoni, 1996 ). Group theory is expected to reveal

ew insights specific to D nh cable-net configurations. Indeed, for

he problem of the vibration of double-layer cable nets of D 4 h sym-

etry, such insights have already been reported in the first part

f the current work ( Zingoni, 2018 ). These have included the type

f symmetries to be expected of the various vibration modes, the

umber of modes that will exhibit a given type of symmetry,

he existence of pairs of modes of the same natural frequency, and

he nature of the symmetry associated with such paired modes. 

The present paper is a continuation of the work on double-

ayer cable nets of D 4 h symmetry. Having gained some qualita-

ive insights in the first paper ( Zingoni, 2018 ), we will now turn

ur attention to computational aspects. We will present the group-

heoretic formulation of the eigenvalue problem, and using the re-

ults for subspace basis vectors that were presented in the first

aper ( Zingoni, 2018 ), we will show how symmetry-adapted flex-

bility matrices for all ten subspaces are obtained, and how sub-

pace eigenvalues (i.e. natural frequencies of the cable net) readily

ollow. 

The structure of the rest of the paper is as follows. In Section 2 ,

e outline the linear theory governing the response of the cable

et, and present the equations of motion for the upper and lower

ayers of the net. In Section 3 , we present a brief description of

he group-theoretic procedure as applied to vibration analysis. In

ection 4 , after describing the layout and symmetry properties of

he double-layer cable net that will form the subject of the rest of

he paper, we summarise key results for symmetry-adapted free-

oms (basis vectors) for the various subspaces of the problem, as

erived in the companion paper ( Zingoni, 2018 ). These are central

o the derivations in Section 5 , where basis vectors are used to

enerate the symmetry-adapted flexibility matrices for all ten sub-

paces of the problem. Symmetry-adapted mass matrices are pre-

ented in Section 6 . In Section 7 , the general procedure for the

alculation of eigenvalues and eigenvectors is explained, and in

ection 8 , a numerical example is considered, to illustrate how the

atural frequencies and mode shapes of the cable net are actually

alculated. The final section summarises the findings and conclu-

ions of the paper. 

. Conventional formulation of the problem 

We assume the double-layer cable net lies in the xyz Cartesian-

oordinate reference system. For a given layer (top or bottom), let

s denote the constant horizontal component of the cable force in

he l th cable of the x -orientated cables (numbering ξ ) by H x , l , the

onstant horizontal component of the cable force in the j th cable

f the y -orientated cables (numbering η) by H y , j , the horizontal

pacing of the x -orientated cables by a , the horizontal spacing of

he y -orientated cables by b , the vertical coordinate of the equilib-

ium position of node { j , l } of the net by z j , l , the vertical load at

ode { j , l } by P j , l , and the concentrated mass at node { j , l } by m j , l .

urthermore, let us distinguish the top and bottom layers of the

able net by the superscripts t and b respectively. The stiffness of

he spring connecting the top and bottom nodes of the cable net

t the intersection { j , l } will be denoted by k j , l . 
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Fig. 1. Forces at top and bottom nodes of cable-net intersection { j , l } when the 

masses are in their equilibrium positions. 
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Fig. 1 is a view in the xz vertical plane, showing the forces at

the top and bottom nodes of cable intersection { j , l }. Notice that

for the top layer, the nodal displacements and nodal loads are con-

sidered positive when acting downwards, whereas for the bottom

layer, nodal displacements and nodal loads are considered posi-

tive when acting upwards. This convention is consistent with the

group-theoretic convention proposed by the author in some of his

earlier work ( Zingoni, 2008, 1996, 2005 ), where the centre of

symmetry or plane of symmetry is taken as the origin or the refer-

ence plane, and displacements or forces are considered positive if

away or towards the centre of symmetry or plane of symmetry. In

the present problem, the reference plane for the system is the hor-

izontal xy plane of symmetry that lies midway between the two

cable-net layers. We take the direction towards the plane of sym-

metry as the positive direction (i.e. downwards for the top-layer

nodes, and upwards for the bottom-layer nodes). Applied to the

double-layer cable net, this novel convention allows us to take ad-

vantage of horizontal mirror symmetry more efficiently. The view

in the yz vertical plane would be similar, except that the cable

forces become H y , j , the z parameters assume the values for the y

direction, and the cable-spacing parameter becomes b . 

By reference to the figure, the following relations, which are

statements of the condition of vertical equilibrium at nodes { j , l }

( j = 1, 2, …, η; l = 1, 2, …, ξ ) of the top and bottom layers of the

cable net, may be written down: 

H 

t 
x, l 

a 

(
2 z t j, l − z t j−1 , l − z t j+1 , l 

)
+ 

H 

t 
y, j 

b 

(
2 z t j, l − z t j, l−1 − z t j, l+1 

)
+ k j, l 

(
z t j, l + z b j, l 

)
− P t j, l = 0 (1a)

H 

b 
x, l 

a 

(
2 z b j, l − z b j−1 , l − z b j+1 , l 

)
+ 

H 

b 
y, j 

b 

(
2 z b j, l − z b j, l−1 − z b j, l+1 

)
+ k j, l 

(
z t j, l + z b j, l 

)
− P b j, l = 0 (1b)

Note that for the top node, we have resolved the forces in the up-

ward direction (i.e. we have taken “upwards” as positive), while for

the bottom node, we have resolved the forces in the downward di-

rection (i.e. we have taken “down” as positive). The two equations

are coupled through the k j , l terms that contain displacements of

both layers. 

Let us denote the small-amplitude vertical vibrations of the

cable-net nodes by v j , l . At node { j , l }, the displacement v j , l due to

vibration is measured from the equilibrium position of the node.

Similar to the convention adopted for z j , l , for the top layer of the

cable net, v j , l is considered positive when acting downwards, while

for the bottom layer, v j , l is considered positive when acting up-

wards. Consistent with the assumption of linear behaviour, the in-
ervals a and b do not change significantly during vibration, and,

s already stated, H x , l and H y , j also remain practically constant.

dapting Equations (1), the equations of motion for nodes { j , l }

f the top and bottom layers of the cable net may therefore be

ritten as 

H 

t 
x, l 

a 

[
2(z t j, l + v t j, l ) − (z t j−1 , l + v t j−1 , l ) − (z t j+1 , l + v t j+1 , l ) 

]
+ 

H 

t 
y, j 

b 

[
2(z t j, l + v t j, l ) − (z t j, l−1 + v t j, l−1 ) − (z t j, l+1 + v t j, l+1 ) 

]
+ k j, l 

{(
z t j, l + v t j, l 

)
+ 

(
z b j, l + v b j, l 

)}
− P t j, l + m 

t 
j, l ̈v 

t 
j, l = 0 (2a)

H 

b 
x, l 

a 

[
2(z b j, l + v b j, l ) − (z b j−1 , l + v b j−1 , l ) − (z b j+1 , l + v b j+1 , l ) 

]
+ 

H 

b 
y, j 

b 

[
2(z b j, l + v b j, l ) − (z b j, l−1 + v b j, l−1 ) − (z b j, l+1 + v b j, l+1 ) 

]
+ k j, l 

{(
z t j, l + v t j, l 

)
+ 

(
z b j, l + v b j, l 

)}
− P b j, l + m 

b 
j, l ̈v 

b 
j, l = 0 (2b)

here for each layer, v̈ j, l is the acceleration of mass m j , l , and the

ast term on the left-hand side represents the inertial force acting

n the mass. 

Making use of Eqs. (1) to simplify Eqs. (2), we obtain 

H 

t 
x, l 

a 

(
2 v t j, l − v t j−1 , l − v t j+1 , l 

)
+ 

H 

t 
y, j 

b 

(
2 v t j, l − v t j, l−1 − v t j, l+1 

)
+ k j, l 

(
v t j, l + v b j, l 

)
+ m 

t 
j, l ̈v 

t 
j, l = 0 (3a)

H 

b 
x, l 

a 

(
2 v b j, l − v b j−1 , l − v b j+1 , l 

)
+ 

H 

b 
y, j 

b 

(
2 v b j, l − v b j, l−1 − v b j, l+1 

)
+ k j, l 

(
v t j, l + v b j, l 

)
+ m 

b 
j, l ̈v 

b 
j, l = 0 (3b)

In our formulation of the vibration problem, we will use the

exibility approach (rather than the stiffness method), in view of

ts conceptual advantages. The cable-net system has a total of 2 ηξ
odes (i.e. ηξ nodes per layer). The associated flexibility coeffi-

ients can readily be calculated on the basis of Equations (1), as

he deflections that ensue at each of the 2 ηξ nodes of the cable

et, when a unit vertical load is applied at node { r , s } ( r = 1, 2,

, η; s = 1, 2, …, ξ ) of layer i ( i = 1, 2) while all other nodes are

nloaded. 

We set up, using Eqs. (1), a system of 2 ηξ simultaneous equa-

ions in 2 ηξ unknowns (i.e. the z t 
j, l 

and z b 
j, l 

), whose right-hand

ides are all zeros except when j = r and l = s in the layer in which

he unit load is applied, where P t 
j, l 

= P t r, s = 1 or P b 
j, l 

= P b r, s = 1 (de-

ending on whether the unit load is placed in the top layer or the

ottom layer). This system is then solved for the z t 
j, l 

and z b 
j, l 

. The

rocedure is repeated with the unit vertical load at another node

f the cable net, until all 2 ηξnodes of the layer have been sub-

ected, one node at a time, to the unit vertical load. In this way,

ll the 4 η 2 ξ 2 flexibility coefficients of the linear-elastic net can

e generated. Unfortunately the procedure can be computationally

ery challenging if the parameters η and ξ are very large. Hence

he need for computational simplifications. 

The group-theoretic approach decomposes the vector space of

he cable-net problem into a number of independent subspaces

panned by symmetry-adapted variables, within which flexibility

atrices are of dimensions much smaller than 2 ηξ × 2 ηξ . This en-

bles us to obtain the natural frequencies of vibration and mode

hapes of the cable net much more conveniently. 

. The group-theoretic procedure in brief 

The first step of a group-theoretic analysis consists in identify-

ng the symmetry elements, and hence the symmetry group G of
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Fig. 2. Plan view of 32-node double-layer cable net of D 4 h symmetry. 
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Fig. 3. Vertical sections of the 32-node double-layer cable net (refer to labels in 

plan view of Fig. 2 ): (a) section A ; (b) section B ; (c) section C ; (d) section D . 
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 given physical problem. An idempotent P ( i ) corresponding to a

iven irreducible representation R ( i ) of the symmetry group, when

pplied on arbitrary vectors of the space V of the problem, has

he property of nullifying every vector which does not belong to

he subspace S ( i ) associated with R ( i ) ( Zingoni et al., 1995; Zlokovic,

989; Zingoni, 1996, 2005, 2015 ). Thus, the operator P ( i ) selects

ll vectors belonging to the subspace S ( i ) , and therefore acts as a

rojection operator ( Hamermesh, 1962 ) of the subspace S ( i ) . Idem-

otents of groups D 2 h and D 4 h were given in the preceding paper

 Zingoni, 2018 ). 

In vibration problems, applying an idempotent to each of the

rbitrary functions describing the motions of a system with n de-

rees of freedom gives the symmetry-adapted functions for the

orresponding subspace, from which a set of r ( r << n ) indepen-

ent basis vectors spanning that subspace may readily be written

own. This procedure was illustrated in detail in the preceding pa-

er ( Zingoni, 2018 ), where all subspace basis vectors for the D 4 h 

able net were derived. 

For a given subspace of the decomposed problem, the basis vec-

ors take the place of the normal degrees of freedom in a con-

entional vibration analysis, and are used to derive the symmetry-

dapted flexibility matrix for the subspace. The symmetry-adapted

ass matrix may also be readily written down, as this is simply

ade up of the values of the masses at the locations of the basis

ectors. This allows a smaller eigenvalue problem to be set up for

ach subspace. 

Solving the eigenvalue problem for a given subpace (which is

f dimension r ), we obtain the eigenvalues of the subspace which,

ery importantly, are also the eigenvalues of the original problem

 Hamermesh, 1962 ). In this way, all the eigenvalues (or natural fre-

uencies) of the original problem are obtained by solving a series

f smaller eigenvalues problems, all independently of each other.

n this way, the group-theoretic approach affords a significant sav-

ng in computational effort. 

. The double-layer cable net of D 4h symmetry 

.1. Layout and symmetry properties 

Let us consider the 32-node double-layer cable net that was in-

roduced in the earlier paper ( Zingoni, 2018 ). For ease of reference,
e will repeat the description of that cable net. Fig. 2 shows a hor-

zontal projection of the cable net, with the top-layer nodes num-

ered 1 to 16 and the bottom-layer nodes numbered 17 to 32. The

able net is, of course, curved in 3-dimensional space, but being

ery shallow, it may be approximated as two layers of cable nodes

n parallel horizontal planes, as shown in the vertical sections of

ig. 3 . The overall configuration belongs to symmetry group D 4 h . 

In Fig. 2 , the principal rotation axis C n is vertical and passes

hrough the centre of the diagram; it contains the centre of

ymmetry of the whole configuration, which is located midway

etween the two layers of the cable net. The vertical C n axis is as-

ociated with the rotation symmetry operations { C 4 , C −1 
4 

, C 2 } . The

orizontal reflection plane associated with the symmetry opera-

ion σ h is located at the level of the centre of symmetry of the

onfiguration. The combination of rotations about the C n axis and

eflection in the horizontal central plane gives rise to the rotary-

eflection operations { S 4 , S −1 
4 

, S 2 } , the last of these being equiva-

ent to the inversion operation i . 

The four vertical reflection planes associated with the sym-

etry operations { σ x , σ y , σ d 1 , σ d 2 } are indicated by the coordi-

ate axes { x , y } and the diagonal axes { d 1 , d 2 } as shown. These

our vertical planes also contain the nonprincipal C 2 rotation

xes { C x 
2 
, C 

y 
2 
, C d1 

2 
, C d2 

2 
} which are all horizontal and pass through

he centre of symmetry. For a more detailed description of the

ymmetry elements of group D 4 h , reference may be made to the

receding paper ( Zingoni, 2018 ). 

The cables are assumed to carry prestressing forces of magni-

ude T 1 or T 2 . In plan, the arrangement of cable forces conforms

o C 4 v symmetry (as is clear from Fig. 2 ). In elevation, pairs of ca-

les lying in the same vertical plane have the same prestress force
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Fig. 4. Unit vertical forces applied in accordance with the coordinates of the basis vectors for subspace S (1) : (a) Set of unit forces associated with �(1) 
1 

; (b) Set of unit forces 

associated with �(1) 
2 

; (c) Set of unit forces associated with �(1) 
3 

. (For interpretation of the references to color in this figure, the reader is referred to the web version of this 

article.) 
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(see Fig. 3 ). Thus the overall pattern of prestressing also conforms

to the D 4 h symmetry of the structural configuration. If group D 4 h 

is to be applicable to the vibration analysis, then the pattern of

prestressing, which is an internal property of the cable net, must

have the full D 4 h symmetry of the structural layout. However, ex-

ternal loads that are applied at the nodes do not have to conform

to any particular symmetry group, as any set of arbitrary exter-

nal loads can always be decomposed into symmetry-adapted loads,

and the components so obtained allocated to their respective sub-

spaces ( Zingoni et al., 1995 ). 

The symmetry operations of group D 4 h , when applied on the

nodal positions 1 to 32 of the double-layer cable net, yield three

permutation sets: corner nodes {1, 4, 13, 16, 17, 20, 29, 32},

mid-side nodes {2, 3, 5, 8, 9, 12, 14, 15, 18, 19, 21, 24, 25, 28,

30, 31}, and centre nodes {6, 7, 10, 11, 22, 23, 26, 27}. Consis-

tent with the requirements of D 4 h symmetry, each node of a given

permutation set will be modelled with the same mass, and the ver-

tical members coupling the nodes of a given permutation set will

also be assigned the same stiffness. The masses and coupling stiff-

nesses for the three sets of nodes are denoted by { m 1 , m 2 , m 3 } and

{ k 1 , k 2 , k 3 } respectively, as illustrated in Fig. 3 . 

4.2. Symmetry-adapted freedoms 

As shown in the preceding paper ( Zingoni, 2018 ), application of

the idempotents of symmetry group D 4 h to the vector space of the

32-node double-layer cable net (which is spanned by the degrees

of freedom v 1 , v 2 , …, v 32 representing the vertical motions of the

masses at the cable nodes) decomposes the vector space into 12

subspaces which are spanned by symmetry-adapted freedoms as

basis vectors. Here is a summary of the results, which form the

basis of the derivations in Section 5 : 

Basis vectors for subspace S (1) 

�(1) 
1 

= v 1 + v 4 + v 13 + v 16 + v 17 + v 20 + v 29 + v 32 (4a)

�(1) 
2 

= v 2 + v 3 + v 5 + v 8 + v 9 + v 12 + v 14 + v 15 + v 18 + v 19 

+ v 21 + v 24 + v 25 + v 28 + v 30 + v 31 (4b)

�(1) = v 6 + v 7 + v 10 + v 11 + v 22 + v 23 + v 26 + v 27 (4c)

3 
Basis vector for subspace S (2) 

(2) 
1 

= v 2 − v 3 − v 5 + v 8 + v 9 − v 12 − v 14 + v 15 + v 18 − v 19 

− v 21 + v 24 + v 25 − v 28 − v 30 + v 31 (5)

Basis vector for subspace S (3) 

(3) 
1 

= v 2 + v 3 − v 5 − v 8 − v 9 − v 12 + v 14 + v 15 + v 18 + v 19 

− v 21 − v 24 − v 25 − v 28 + v 30 + v 31 (6)

Basis vectors for subspace S (4) 

(4) 
1 

= v 1 − v 4 − v 13 + v 16 + v 17 − v 20 − v 29 + v 32 (7a)

(4) 
2 

= v 2 − v 3 + v 5 − v 8 − v 9 + v 12 − v 14 + v 15 + v 18 − v 19 + v 21 

− v 24 − v 25 + v 28 − v 30 + v 31 (7b)

(4) 
3 

= v 6 − v 7 − v 10 + v 11 + v 22 − v 23 − v 26 + v 27 (7c)

Basis vectors for subspace S (5 A ) 

(5 A ) 
1 

= �(5) 
1 

= v 1 − v 16 − v 17 + v 32 (8a)

(5 A ) 
2 

= �(5) 
6 

= v 6 − v 11 − v 22 + v 27 (8b)

(5 A ) 
3 

= �(5) 
2 

+ �(5) 
5 

= v 2 + v 5 − v 12 − v 15 − v 18 − v 21 + v 28 + v 31 

(8c)

(5 A ) 
4 

= �(5) 
3 

− �(5) 
8 

= v 3 − v 8 + v 9 − v 14 − v 19 + v 24 − v 25 + v 30 

(8d)

Basis vectors for subspace S (5 B ) 

(5 B ) 
1 

= �(5) 
4 

= v 4 − v 13 − v 20 + v 29 (9a)

(5 B ) 
2 

= �(5) 
7 

= v 7 − v 10 − v 23 + v 26 (9b)

(5 B ) 
3 

= �(5) 
2 

− �(5) 
5 

= v 2 − v 5 + v 12 − v 15 − v 18 + v 21 − v 28 + v 31 

(9c)
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Fig. 5. Unit vertical forces applied in accordance with the coordinates of the basis 

vector for subspace S (2) : Set of unit forces associated with �(2) 
1 

. (For interpretation 

of the references to color in this figure, the reader is referred to the web version of 

this article.) 
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Fig. 6. Unit vertical forces applied in accordance with the coordinates of the basis 

vector for subspace S (3) : Set of unit forces associated with �(3) 
1 

. (For interpretation 

of the references to color in this figure, the reader is referred to the web version of 

this article.) 
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f  

s  

s  
(5 B ) 
4 

= �(5) 
3 

+ �(5) 
8 

= v 3 + v 8 − v 9 − v 14 − v 19 − v 24 + v 25 + v 30 

(9d) 

Basis vectors for subspace S (6) 

(6) 
1 

= v 2 − v 3 − v 5 + v 8 + v 9 − v 12 − v 14 + v 15 − v 18 + v 19 

+ v 21 − v 24 − v 25 + v 28 + v 30 − v 31 (10) 

Basis vectors for subspace S (7) 

(7) 
1 

= v 1 + v 4 + v 13 + v 16 − v 17 − v 20 − v 29 − v 32 (11a) 

(7) 
2 

= v 2 + v 3 + v 5 + v 8 + v 9 + v 12 + v 14 + v 15 − v 18 − v 19 

− v 21 − v 24 − v 25 − v 28 − v 30 − v 31 (11b) 

(7) 
3 

= v 6 + v 7 + v 10 + v 11 − v 22 − v 23 − v 26 − v 27 (11c) 

Basis vectors for subspace S (8) 

(8) 
1 

= v 1 − v 4 − v 13 + v 16 − v 17 + v 20 + v 29 − v 32 (12a) 

(8) 
2 

= v 2 − v 3 + v 5 − v 8 − v 9 + v 12 − v 14 + v 15 − v 18 + v 19 − v 21 

+ v 24 + v 25 − v 28 + v 30 − v 31 (12b) 

(8) 
3 

= v 6 − v 7 − v 10 + v 11 − v 22 + v 23 + v 26 − v 27 (12c) 

Basis vector for subspace S (9) 

(9) 
1 

= v 2 + v 3 − v 5 − v 8 − v 9 − v 12 + v 14 + v 15 − v 18 − v 19 + v 21 

+ v 24 + v 25 + v 28 − v 30 − v 31 (13) 

Basis vectors for subspace S (10 A ) 

(10 A ) = �(10) = v 1 − v 16 + v 17 − v 32 (14a) 

1 1 
(10 A ) 
2 

= �(10) 
6 

= v 6 − v 11 + v 22 − v 27 (14b) 

(10 A ) 
3 

= �(10) 
2 

+ �(10) 
5 

= v 2 + v 5 − v 12 − v 15 + v 18 

+ v 21 − v 28 − v 31 (14c) 

(10 A ) 
4 

= �(10) 
3 

− �(10) 
8 

= v 3 − v 8 + v 9 − v 14 + v 19 − v 24 + v 25 − v 30 

(14d) 

Basis vectors for subspace S (10 B ) 

(10 B ) 
1 

= �(10) 
4 

= v 4 − v 13 + v 20 − v 29 (15a) 

(10 B ) 
2 

= �(10) 
7 

= v 7 − v 10 + v 23 − v 26 (15b) 

(10 B ) 
3 

= �(10) 
2 

− �(10) 
5 

= v 2 − v 5 + v 12 − v 15 + v 18 − v 21 + v 28 − v 31 

(15c) 

(10 B ) 
4 

= �(10) 
3 

+ �(10) 
8 

= v 3 + v 8 − v 9 − v 14 + v 19 + v 24 − v 25 − v 30 

(15d) 

. Symmetry-adapted flexibility matrices 

Figs. 4 to 13 show, for subspace S (1) up to S (10) , unit vertical

orces applied upon the cable-net nodes in accordance with the

oordinates of the respective basis vectors. As explained previously

 Zingoni, 2018 ), consideration of either subspace S (5 A ) or S (5 B ) will

ield all the 8 natural frequencies of subspace S (5) , which occur as

our sets of repeated roots. Similarly, consideration of either sub-

pace S (10 A ) or S (10 B ) will yield all the 8 natural frequencies of sub-

pace S (10) , which also occur as four sets of repeated roots. We
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Fig. 7. Unit vertical forces applied in accordance with the coordinates of the basis vectors for subspace S (4) : (a) Set of unit forces associated with �(4) 
1 

; (b) Set of unit forces 

associated with �(4) 
2 

; (c) Set of unit forces associated with �(4) 
3 

. (For interpretation of the references to color in this figure, the reader is referred to the web version of this 

article.) 
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have chosen subspaces S (5 A ) and S (10 A ) as representative of sub-

spaces S (5) and S (10) . 

In plotting the set of unit vertical forces for each basis vec-

tor, the top and bottom layers of the cable net are shown sepa-

rately (one below the other), for clarity. The sign (positive or neg-

ative) of the unit vertical force applied at a given node is given

by the sign of the corresponding basis-vector component. Consis-

tent with our convention for displacements, the positive direction

of the unit vertical forces is taken as the direction towards the

central horizontal plane of symmetry of the double-layer cable net

(i.e. downward for top-layer nodes, and upward for bottom-layer

nodes). To enhance clarity, positive unit forces are shown in black,

while negative unit forces are shown in red. As an example, the

basis vector �(1) 
1 

of subspace S (1) – refer to Eq. (4a) – has eight

components { v 1 , v 4 , v 13 , v 16 , v 17 , v 20 , v 29 , v 32 }, which are all positive. So

in plotting Fig. 4 (a), unit vertical forces are shown pointing down-

wards at the top-layer nodes 1, 4, 13 and 16, and pointing up-

wards at the bottom-layer nodes 17, 20, 29 and 32, all being in

black. 

For a given subspace spanned by r basis vectors, let d ij ( i = 1,

2, …, r ; j = 1, 2, …, r ) be the vertical displacement at any of

the nodes of the basis vector �i , due to unit vertical forces simul-

taneously applied at all the nodes of the basis vector �j . At each

node of the cable net experiencing the vertical displacement d ij ,

the vertical resultants of the cable tensions will be in equilibrium

with the spring force, and any unit vertical force that may be act-

ing at that node. Setting a = b (equal cable spacing in both the x

and y directions), and using the values of cable forces and spring

stiffnesses applicable for the node in question (refer to Figs 2 and

3 ), we can make use of either of Eqs. (1) to write down the equi-

librium equation for the node. As a result of applying unit vertical

forces at all the nodes of the basis vector �j , the condition of ver-

tical equilibrium at each of the r sets of nodes (corresponding to

the r basis vectors of the subspace) leads to r simultaneous equa-

tions in the r deflection unknowns { d 1 j , d 2 j ,…, d rj }, which may be

expressed as follows: 

⎡ 

⎢ ⎣ 

b 11 b 12 . b 1 r 
b 21 b 22 . b 2 r 
. . . . 

b r1 b r2 . b rr 

⎤ 

⎥ ⎦ 

⎧ ⎪ ⎨ 

⎪ ⎩ 

d 1 j 
d 2 j 
. 

d r j 

⎫ ⎪ ⎬ 

⎪ ⎭ 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

δ1 j 

δ2 j 

. 

δr j 

⎫ ⎪ ⎬ 

⎪ ⎭ 

(16)
 

or j = 1, 2, ..., r ; δij = 1 if i = j , δij = 0 if i � = j . This equation can be

ritten as 

B 

(μ) 
]{

d j 
}

= 

{
δ j 

}
(17)

here [ B ( μ) ] is the r × r equilibrium matrix corresponding to sub-

pace S ( μ) ; { δj } is an r × 1 column vector consisting of a "1 ′′ at row

 and "zeros" everywhere else; and { d j } is the r × 1 column vec-

or of deflections corresponding to the application of unit vertical

orces at each of the nodes of �j . Thus the elements of { d j } are

he flexibility coefficients corresponding to the application of unit

ertical forces at the nodes of �j . 

Re-arranging Eq. (17) , we obtain the solution for the { d j } as fol-

ows: 

d j 
}

= 

[
B 

(μ) 
]−1 {

δ j 

}
; j = 1 , 2 , . . . , r (18)

here the column vectors { δj } are as defined above. Putting to-

ether the solutions for the column vectors { d j } for all values of j

i.e. j = 1, 2, …, r ), we obtain the assembled r × r flexibility matrix

or subspace S ( μ) , which we will denote by [ A 

( μ) ], as follows: 

A 

(μ) 
]

= 

[{ d 1 } { d 2 } · · · { d r } 
]

(19)

Below, we derive the [ B ( μ) ] matrix for each of the ten subspaces

f the double-layer cable net. We first express, on the basis of Eqs.

1), the conditions of vertical equilibrium at the nodes of each ba-

is vector of the subspace, and then collect these into the form

 B ( μ) ]{ d j } = [ δj ]. This procedure for generating the [ B ( μ) ] matrices is

ey to the group-theoretic computational scheme. With the [ B ( μ) ]

atrices known, the { d j } may then be evaluated from Eq. (18) , and

ut together in accordance with Eq. (19) to yield, for each subspace

 

( μ) , the associated symmetry-adapted flexibility matrix [ A 

( μ) ]. 

Subspace S (1) 

Simultaneous application of unit vertical forces at all the nodes

f the basis vector �j ( j = 1, 2, 3) – refer to Fig. 4 – yields the

ollowing equilibrium equations: 

At nodes of �1 : 
T 1 
a 

(
2 d 1 j − 0 − d 2 j 

)
+ 

T 1 
a 

(
2 d 1 j − 0 − d 2 j 

)
+ k 1 

(
d 1 j + d 1 j 

)
= δ1 j (20a)

At nodes of �2 : 
T 1 
a 

(
2 d 2 j − d 1 j − d 2 j 

)
+ 

T 2 
a 

(
2 d 2 j − 0 − d 3 j 

)
+ k 2 

(
d 2 j + d 2 j 

)
= δ2 j (20b)
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Fig. 8. Unit vertical forces applied in accordance with the coordinates of the basis vectors for subspace S (5 A ) : (a) Set of unit forces associated with �(5 A ) 
1 

; (b) Set of unit 

forces associated with �(5 A ) 
2 

; (c) Set of unit forces associated with �(5 A ) 
3 

; (d) Set of unit forces associated with �(5 A ) 
4 

. (For interpretation of the references to color in this 

figure, the reader is referred to the web version of this article.) 
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w[
At nodes of �3 : 
T 2 
a 

(
2 d 3 j − d 2 j − d 3 j 

)
+ 

T 2 
a 

(
2 d 3 j − d 2 j − d 3 j 

)
+ k 3 

(
d 3 j + d 3 j 

)
= δ3 j (20c) 

riting these equations in matrix form (i.e. in the format of

q. (16) ), we obtain 

 

 

 

 

 

(
4 T 1 
a 

+ 2 k 1 
)

− 2 T 1 
a 

0 

− T 1 
a 

(
T 1 +2 T 2 

a 
+ 2 k 2 

)
− T 2 

a 

0 − 2 T 2 
a 

(
2 T 2 
a 

+ 2 k 3 
)

⎤ 

⎥ ⎥ ⎥ ⎦ 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

d 1 j 

d 2 j 

d 3 j 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

δ1 j 

δ2 j 

δ3 j 

⎫⎪⎪⎬
⎪⎪⎭

(21) 
here δij = 1 if i = j ; δij = 0 if i � = j . The required equilibrium ma-

rix for subspace S (1) , that is [ B (1) ], is the 3 × 3 matrix in the above

quation. 

Subspace S (2) 

Simultaneous application of unit vertical forces at all the nodes

f the basis vector �j ( j = 1) – refer to Fig. 5 – yields the following

quilibrium equation: 

At nodes of �1 : 
T 1 
a 

(
2 d 1 j − 0 + d 1 j 

)
+ 

T 2 
a 

(
2 d 1 j − 0 − 0 

)
+ k 2 

(
d 1 j + d 1 j 

)
= δ1 j (22) 

riting this equation in matrix form (i.e. in the format of Eq. (16) ),

e obtain 

 

3 T 1 + 2 T 2 
a 

+ 2 k 2 

] {
d 1 j 

}
= 

{
δ1 j 

}
(23) 
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Fig. 9. Unit vertical forces applied in accordance with the coordinates of the basis 

vector for subspace S (6) : Set of unit forces associated with �(6) 
1 

. (For interpretation 

of the references to color in this figure, the reader is referred to the web version of 

this article.) 
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where, in this case, { d 1 j } = { d 11 } and { δij } = { δ11 } = 1. The equilib-

rium matrix for subspace S (2) , that is [ B (2) ], is the 1 × 1 matrix in

the above equation. In this very simple case, the subspace flexibil-

ity matrix [ A 

(2) ] is a 1 × 1 matrix, and immediately follows from

Eqs. (19) and (23) : [
A 

(2) 
]

= [ { d 1 } ] = [ d 11 ] = 

[
1 

3 T 1 +2 T 2 
a 

+ 2 k 2 

]
(24)

Subspace S (3) 

Simultaneous application of unit vertical forces at all the nodes

of the basis vector �j ( j = 1) – refer to Fig. 6 – yields the following

equilibrium equation: 

At nodes of �1 : 
T 1 
a 

(
2 d 1 j − 0 − d 1 j 

)
+ 

T 2 
a 

(
2 d 1 j − 0 − 0 

)
+ k 2 

(
d 1 j + d 1 j 

)
= δ1 j (25)

Writing this equation in matrix form (i.e. in the format of Eq. (16) ),

we obtain [ 
T 1 + 2 T 2 

a 
+ 2 k 2 

] {
d 1 j 

}
= 

{
δ1 j 

}
(26)

where, in this case, { d 1 j } = { d 11 } and { δij } = { δ11 } = 1. The equilib-

rium matrix for subspace S (3) , that is [ B (3) ], is the 1 × 1 matrix in

the above equation. In this very simple case, the subspace flexibil-

ity matrix [ A 

(3) ] is a 1 × 1 matrix, and immediately follows from

Eqs. (19) and (26) : [
A 

(3) 
]

= [ { d 1 } ] = [ d 11 ] = 

[
1 

T 1 +2 T 2 
a 

+ 2 k 2 

]
(27)

Subspace S (4) 

Simultaneous application of unit vertical forces at all the nodes

of the basis vector �j ( j = 1, 2, 3) – refer to Fig. 7 – yields the
ollowing equilibrium equations: 

At nodes of �1 : 
T 1 
a 

(
2 d 1 j − 0 − d 2 j 

)
+ 

T 1 
a 

(
2 d 1 j − 0 − d 2 j 

)
+ k 1 

(
d 1 j + d 1 j 

)
= δ1 j (28a)

At nodes of �2 : 
T 1 
a 

(
2 d 2 j − d 1 j + d 2 j 

)
+ 

T 2 
a 

(
2 d 2 j − 0 − d 3 j 

)
+ k 2 

(
d 2 j + d 2 j 

)
= δ2 j (28b)

At nodes of �3 : 
T 2 
a 

(
2 d 3 j − d 2 j + d 3 j 

)
+ 

T 2 
a 

(
2 d 3 j − d 2 j + d 3 j 

)
+ k 3 

(
d 3 j + d 3 j 

)
= δ3 j (28c)

riting these equations in matrix form (i.e. in the format of

q. (16) ), we obtain 

 

 

 

 

 

(
4 T 1 
a 

+ 2 k 1 
)

− 2 T 1 
a 

0 

− T 1 
a 

(
3 T 1 +2 T 2 

a 
+ 2 k 2 

)
− T 2 

a 

0 − 2 T 2 
a 

(
6 T 2 
a 

+ 2 k 3 
)

⎤ 

⎥ ⎥ ⎥ ⎦ 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

d 1 j 

d 2 j 

d 3 j 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

δ1 j 

δ2 j 

δ3 j 

⎫⎪⎪⎬
⎪⎪⎭

(29)

here δij = 1 if i = j ; δij = 0 if i � = j . The required equilibrium ma-

rix for subspace S (4) , that is [ B (4) ], is the 3 × 3 matrix in the above

quation. 

Subspace S (5 A ) 

Simultaneous application of unit vertical forces at all the nodes

f the basis vector �j ( j = 1, 2, 3, 4) – refer to Fig. 8 – yields the

ollowing equilibrium equations: 

At nodes of �1 : 
T 1 
a 

(
2 d 1 j − 0 − d 3 j 

)
+ 

T 1 
a 

(
2 d 1 j − 0 − d 3 j 

)
+ k 1 

(
d 1 j − d 1 j 

)
= δ1 j (30a)

At nodes of �2 : 
T 2 
a 

(
2 d 2 j − d 3 j − 0 

)
+ 

T 2 
a 

(
2 d 2 j − d 3 j − 0 

)
+ k 3 

(
d 2 j − d 2 j 

)
= δ2 j (30b)

At nodes of �3 : 
T 1 
a 

(
2 d 3 j − d 1 j − d 4 j 

)
+ 

T 2 
a 

(
2 d 3 j − 0 − d 2 j 

)
+ k 2 

(
d 3 j − d 3 j 

)
= δ3 j (30c)

At nodes of �4 : 
T 1 
a 

(
2 d 4 j − d 3 j − 0 

)
+ 

T 2 
a 

(
2 d 4 j − 0 − 0 

)
+ k 2 

(
d 4 j − d 4 j 

)
= δ4 j (30d)

riting these equations in matrix form (i.e. in the format of

q. (16) ), we obtain 

 

 

 

 

 

 

 

 

4 T 1 
a 

0 − 2 T 1 
a 

0 

0 

4 T 2 
a 

− 2 T 2 
a 

0 

− T 1 
a 

− T 2 
a 

2( T 1 + T 2 ) 
a 

− T 1 
a 

0 0 − T 1 
a 

2( T 1 + T 2 ) 
a 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

d 1 j 

d 2 j 

d 3 j 

d 4 j 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

δ1 j 

δ2 j 

δ3 j 

δ4 j 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(31)
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Fig. 10. Unit vertical forces applied in accordance with the coordinates of the basis vectors for subspace S (7) : (a) Set of unit forces associated with �(7) 
1 

; (b) Set of unit forces 

associated with �(7) 
2 

; (c) Set of unit forces associated with �(7) 
3 

. (For interpretation of the references to color in this figure, the reader is referred to the web version of this 

article.) 

Fig. 11. Unit vertical forces applied in accordance with the coordinates of the basis vectors for subspace S (8) : (a) Set of unit forces associated with �(8) 
1 

; (b) Set of unit forces 

associated with �(8) 
2 

; (c) Set of unit forces associated with �(8) 
3 

. (For interpretation of the references to color in this figure, the reader is referred to the web version of this 

article.) 
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f

here δij = 1 if i = j ; δij = 0 if i � = j . The required equilibrium matrix

or subspace S (5 A ) , that is [ B (5 A ) ], is the 4 × 4 matrix in the above

quation. 

Subspace S (6) 

Simultaneous application of unit vertical forces at all the nodes

f the basis vector �j ( j = 1) – refer to Fig. 9 – yields the following

quilibrium equation: 

At nodes of �1 : 
T 1 
a 

(
2 d 1 j − 0 + d 1 j 

)
+ 

T 2 
a 

(
2 d 1 j − 0 − 0 

)
+ k 2 

(
d 1 j − d 1 j 

)
= δ1 j (32) 

riting this equation in matrix form (i.e. in the format of Eq. (16) ),

e obtain 

 

3 T 1 + 2 T 2 
a 

] {
d 1 j 

}
= 

{
δ1 j 

}
(33) 
here, in this case, { d 1 j } = { d 11 } and { δij } = { δ11 } = 1. The equilib-

ium matrix for subspace S (6) , that is [ B (6) ], is the 1 × 1 matrix in

he above equation. In this very simple case, the subspace flexibil-

ty matrix [ A 

(6) ] is a 1 × 1 matrix, and immediately follows from

qs. (19) and (33) : 

A 

(6) 
]

= [ { d 1 } ] = [ d 11 ] = 

[
1 

3 T 1 +2 T 2 
a 

]
(34) 

Subspace S (7) 

Simultaneous application of unit vertical forces at all the nodes

f the basis vector �j ( j = 1, 2, 3) – refer to Fig. 10 – yields the

ollowing equilibrium equations: 

At nodes of �1 : 
T 1 
a 

(
2 d 1 j − 0 − d 2 j 

)
+ 

T 1 
a 

(
2 d 1 j − 0 − d 2 j 

)
+ k 1 

(
d 1 j − d 1 j 

)
= δ1 j (35a) 
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Fig. 12. Unit vertical forces applied in accordance with the coordinates of the basis 

vector for subspace S (9) : Set of unit forces associated with �(9) 
1 

. (For interpretation 

of the references to color in this figure, the reader is referred to the web version of 

this article.) 
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At nodes of �2 : 
T 1 
a 

(
2 d 2 j − d 1 j − d 2 j 

)
+ 

T 2 
a 

(
2 d 2 j − 0 − d 3 j 

)
+ k 2 

(
d 2 j − d 2 j 

)
= δ2 j (35b)

At nodes of �3 : 
T 2 
a 

(
2 d 3 j − d 2 j − d 3 j 

)
+ 

T 2 
a 

(
2 d 3 j − d 2 j − d 3 j 

)
+ k 3 

(
d 3 j − d 3 j 

)
= δ3 j (35c)

Writing these equations in matrix form (i.e. in the format of

Eq. (16) ), we obtain ⎡ 

⎢ ⎢ ⎢ ⎣ 

4 T 1 
a 

− 2 T 1 
a 

0 

− T 1 
a 

T 1 +2 T 2 
a 

− T 2 
a 

0 − 2 T 2 
a 

2 T 2 
a 

⎤ 

⎥ ⎥ ⎥ ⎦ 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

d 1 j 

d 2 j 

d 3 j 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

δ1 j 

δ2 j 

δ3 j 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

(36)

where δij = 1 if i = j ; δij = 0 if i � = j . The required equilibrium ma-

trix for subspace S (7) , that is [ B (7) ], is the 3 × 3 matrix in the above

equation. 

Subspace S (8) 

Simultaneous application of unit vertical forces at all the nodes

of the basis vector �j ( j = 1, 2, 3) – refer to Fig. 11 – yields the

following equilibrium equations: 

At nodes of �1 : 
T 1 
a 

(
2 d 1 j − 0 − d 2 j 

)
+ 

T 1 
a 

(
2 d 1 j − 0 − d 2 j 

)
+ k 1 

(
d 1 j − d 1 j 

)
= δ1 j (37a)

At nodes of �2 : 
T 1 
a 

(
2 d 2 j − d 1 j + d 2 j 

)
+ 

T 2 
a 

(
2 d 2 j − 0 − d 3 j 

)
+ k 2 

(
d 2 j − d 2 j 

)
= δ2 j (37b)
At nodes of �3 : 
T 2 
a 

(
2 d 3 j − d 2 j + d 3 j 

)
+ 

T 2 
a 

(
2 d 3 j − d 2 j + d 3 j 

)
+ k 3 

(
d 3 j − d 3 j 

)
= δ3 j (37c)

riting these equations in matrix form (i.e. in the format of

q. (16) ), we obtain 

 

 

 

 

 

4 T 1 
a 

− 2 T 1 
a 

0 

− T 1 
a 

3 T 1 +2 T 2 
a 

− T 2 
a 

0 − 2 T 2 
a 

6 T 2 
a 

⎤ 

⎥ ⎥ ⎥ ⎦ 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

d 1 j 

d 2 j 

d 3 j 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

δ1 j 

δ2 j 

δ3 j 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

(38)

here δij = 1 if i = j ; δij = 0 if i � = j . The required equilibrium ma-

rix for subspace S (8) , that is [ B (8) ], is the 3 × 3 matrix in the above

quation. 

Subspace S (9) 

Simultaneous application of unit vertical forces at all the nodes

f the basis vector �j ( j = 1) – refer to Fig. 12 – yields the following

quilibrium equation: 

At nodes of �1 : 
T 1 
a 

(
2 d 1 j − 0 − d 1 j 

)
+ 

T 2 
a 

(
2 d 1 j − 0 − 0 

)
+ k 2 

(
d 1 j − d 1 j 

)
= δ1 j (39)

riting this equation in matrix form (i.e. in the format of Eq. (16) ),

e obtain 

 

T 1 + 2 T 2 
a 

] {
d 1 j 

}
= 

{
δ1 j 

}
(40)

here, in this case, { d 1 j } = { d 11 } and { δij } = { δ11 } = 1. The equilib-

ium matrix for subspace S (9) , that is [ B (9) ], is the 1 × 1 matrix in

he above equation. In this very simple case, the subspace flexibil-

ty matrix [ A 

(9) ] is a 1 × 1 matrix, and immediately follows from

qs. (19) and (40) : 

A 

(9) 
]

= [ { d 1 } ] = [ d 11 ] = 

[
1 

T 1 +2 T 2 
a 

]
(41)

Subspace S (10 A ) 

Simultaneous application of unit vertical forces at all the nodes

f the basis vector �j ( j = 1, 2, 3, 4) – refer to Fig. 13 – yields the

ollowing equilibrium equations: 

At nodes of �1 : 
T 1 
a 

(
2 d 1 j − 0 − d 3 j 

)
+ 

T 1 
a 

(
2 d 1 j − 0 − d 3 j 

)
+ k 1 

(
d 1 j + d 1 j 

)
= δ1 j (42a)

At nodes of �2 : 
T 2 
a 

(
2 d 2 j − d 3 j − 0 

)
+ 

T 2 
a 

(
2 d 2 j − d 3 j − 0 

)
+ k 3 

(
d 2 j + d 2 j 

)
= δ2 j (42b)

At nodes of �3 : 
T 1 
a 

(
2 d 3 j − d 1 j − d 4 j 

)
+ 

T 2 
a 

(
2 d 3 j − 0 − d 2 j 

)
+ k 2 

(
d 3 j + d 3 j 

)
= δ3 j (42c)

At nodes of �4 : 
T 1 
a 

(
2 d 4 j − d 3 j − 0 

)
+ 

T 2 
a 

(
2 d 4 j − 0 − 0 

)
+ k 2 

(
d 4 j + d 4 j 

)
= δ4 j (42d)

riting these equations in matrix form (i.e. in the format of

q. (16) ), we obtain 
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Table 1 

Degrees of characteristic equa- 

tions of subspaces of the 32- 

node double-layer cable net. 

Subspace κ ( = r ) 

S (1) 3 

S (2) 1 

S (3) 1 

S (4) 3 

S (5 A ) 4 

S (5 B ) 4 

S (6) 1 

S (7) 3 

S (8) 3 

S (9) 1 

S (10 A ) 4 

S (10 B ) 4 

Full Space 32 

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

 

 

T 1 
a 

) + 2
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e
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o  
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e∣∣∣∣∣∣∣

w  
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n  

s  

s

 

c  

s  

T  

w  

o  

y  

o  

t  

o  

1

 

t  

u  

d  

t  

t  

e  

e  

c  

I  

s  

e

 

t  

s[
 

 

 

 

 

 

 

 

 

(
4 T 1 
a 

+ 2 k 1 
)

0 − 2 T 1 
a 

0

0 

(
4 T 2 
a 

+ 2 k 3 
)

− 2 T 2 
a 

0

− T 1 
a 

− T 2 
a 

(
2( T 1 + T 2 ) 

a 
+ 2 k 2 

)
−

0 0 − T 1 
a 

(
2( T 1 + T 2 

a 

here δij = 1 if i = j ; δij = 0 if i � = j . The required equilibrium matrix

or subspace S (10 A ) , that is [ B (10 A ) ], is the 4 × 4 matrix in the above

quation. 

. Subspace mass matrices 

As already pointed out in Section 4.1 , the distribution of con-

entrated masses at the nodes of the double-layer cable net is con-

istent with the overall D 4 h symmetry of the net. Nodes belonging

o the same permutation set under the operation of the elements

f group D 4 h have the same values of mass, designated as follows

see Fig. 3 ): 

• corner nodes {1, 4, 13, 16, 17, 20, 29, 32}: m 1 

• mid-side nodes {2, 3, 5, 8, 9, 12, 14, 15, 18, 19, 21, 24, 25,

28, 30, 31}: m 2 

• centre nodes {6, 7, 10, 11, 22, 23, 26, 27}: m 3 

The symmetry-adapted diagonal mass matrix [ M 

( μ) ] for a given

ubspace S ( μ) consists of non-zero diagonal elements m ii ( i = 1, 2,

…, r ), which are the values of the mass at each of the nodes of

asis vector �i . Thus for the ten subspaces of our problem, the

esults for symmetry-adapted mass matrices are as follows: 

M 

(1) 
]

= 

[
M 

(4) 
]

= 

[
M 

(7) 
]

= 

[
M 

(8) 
]

= 

[ 

m 1 0 0 

0 m 2 0 

0 0 m 3 

] 

(44) 

M 

(2) 
]

= 

[
M 

(3) 
]

= 

[
M 

(6) 
]

= 

[
M 

(9) 
]

= [ m 2 ] (45) 

M 

(5 A ) 
]

= 

[
M 

(10 A ) 
]

= 

⎡ 

⎢ ⎣ 

m 1 0 0 0 

0 m 3 0 0 

0 0 m 2 0 

⎤ 

⎥ ⎦ 

(46) 
0 0 0 m 2 
 k 2 
)

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

d 1 j 

d 2 j 

d 3 j 

d 4 j 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

δ1 j 

δ2 j 

δ3 j 

δ4 j 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(43) 

. Eigenvalues and eigenvectors 

Eigenvalues λ ( = 1/ ω 

2 , where ω is a natural circular frequency

f the system) for each subspace are obtained from the vanishing

ondition of the determinant: [
A 

(μ) 
]

− λ
[
M 

(μ) 
]−1 

∣∣∣ = 0 (47) 

here [ A 

( μ) ], the subspace flexibility matrix, consists of elements

 ij ( i = 1, 2, …, r; j = 1, 2, …, r ) as obtained in Section 5 , and

 M 

( μ) ], the subspace mass matrix, consists of non-zero diagonal el-

ments m ii ( i = 1, 2, …, r ) as obtained in Section 6 . Written in

xpanded form, the above determinant becomes 

( d 11 − (λ/ m 11 ) ) d 12 . d 1 r 
d 21 ( d 22 − (λ/ m 22 ) ) . d 2 r 
. . . . 

d r1 d r2 . ( d rr − (λ/ m rr ) ) 

∣∣∣∣∣∣∣ = 0 

(48) 

hich may be expanded into an r th-degree polynomial (character-

stic equation) in λ, and solved for the r roots that are associated

ith the subspace in question. For the 32-node double-layer cable

et, the degrees κ of the characteristic equations of the various

ubspaces, which are equal to the dimensions r of the respective

ubspaces, are summarised in Table 1 . 

Between them, the ten subspaces of our 32-node double-layer

able net yield a total of 32 eigenvalues (bearing in mind that the

olutions for subspaces S (5 A ) and S (10 A ) are doubly repeating roots).

hese are, in fact, the actual eigenvalues of the original problem,

hich completes the determination of all 32 natural frequencies

f vibration of the cable net. For a formal proof that eigenvalues

ielded by the various symmetry subspaces are also eigenvalues

f the full space of the original problem, reference may be made

o any of the well-known classical texts on physical applications

f group theory (see, for example, references ( Weyl, 1932; Wigner,

959; Hamermesh, 1962; Schonland, 1965 )). 

From the above, it can be seen how effectively the group-

heoretic procedure has simplified the determination of eigenval-

es (natural frequencies) of the cable net. Instead of tackling a 32

.o.f. system and eventually having to solve a polynomial equa-

ion of degree 32, the group-theoretic approach has decomposed

he problem into ten subspaces of smaller dimensions (the high-

st subspace dimension being only 4), which yield ten polynomial

quations of smaller degree (the highest degree being only 4). This

learly represents a considerable reduction in computational effort.

t is a quantitative benefit that is additional to the qualitative in-

ights that were gained ( Zingoni, 2018 ) prior to the start of the

igenvalue computations. 

The eigenvectors { 
} for each subspace are obtained by substi-

uting the r eigenvalues of the subspace, one at a time, into the

ubspace eigenvalue equation 

 [
A 

(μ) 
]

− λ
[
M 

(μ) 
]−1 

] 
{ 
} = { 0 } (49) 
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Fig. 13. Unit vertical forces applied in accordance with the coordinates of the basis vectors for subspace S (10 A ) : (a) Set of unit forces associated with �(10 A ) 
1 

; (b) Set of unit 

forces associated with �(10 A ) 
2 

; (c) Set of unit forces associated with �(10 A ) 
3 

; (d) Set of unit forces associated with �(10 A ) 
4 

. (For interpretation of the references to color in this 

figure, the reader is referred to the web version of this article.) 
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Writing this in expanded form, we obtain ⎡ 

⎢ ⎣ 

( d 11 − (λ/ m 11 ) ) d 12 . d 1 r 
d 21 ( d 22 − (λ/ m 22 ) ) . d 2 r 
. . . . 

d r1 d r2 . ( d rr − (λ/ m rr ) ) 

⎤ 

⎥ ⎦ 

⎧ ⎪ ⎨ 

⎪ ⎩ 

ψ 1 

ψ 2 

. 

ψ r 

⎫ ⎪ ⎬ 

⎪ ⎭ 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 

0 

. 

0 

⎫ ⎪ ⎬ 

⎪ ⎭ 

(50)

So, by substituting a given eigenvalue of the subspace into Eq. (50) ,

and solving for the components ψ 1 , ψ 2 , …, ψ r , we obtain the

eigenvector { ψ 1 ψ 2 . ψ r } T corresponding to that eigen-

value. We repeat the process for all the r eigenvalues of the sub-
pace, in this way generating the r eigenvectors of the subspace.

nlike the r subspace eigenvalues which are also eigenvalues of

he original problem, these r eigenvectors are eigenvectors in the r -

imensional subspace, not in the ( n -dimensional) full space of the

riginal problem. 

We note that the r components ψ 1 , ψ 2 , ..., ψ r of a subspace

igenvector correspond to the basis vectors �1 , �2 , …, �r , respec-

ively, of the subspace in question. Therefore to obtain the eigen-

ector { U } in the original n-dimensional vector space of the problem ,

e simply allocate the calculated value of a subspace-eigenvector

omponent to all the cable nodes associated with the basis vector,

ith the signs (positive or negative) of the allocations being in ac-

ordance with those of the basis-vector terms (as appear in Eqs.

4) to (15)). 
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Fig. 14. Vibration modes of subspace S (1) of numerical example: (a) U 

(1) 
1 

; (b) U 

(1) 
2 

; (c) U 

(1) 
3 

. (For interpretation of the references to color in this figure, the reader is referred 

to the web version of this article.) 

Fig. 15. Vibration mode of subspace S (2) of numerical example: U 

(2) 
1 

. (For interpre- 

tation of the references to color in this figure, the reader is referred to the web 

version of this article.) 
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The n deflection components h 1 , h 2 , …, h n of the mode shape

 H i } corresponding to the system eigenvector { U i } are finally ob-

ained through the well-known relationship 

 

H i } = 

[
M 

−1 
]{ U i } (51) 

here [ M ] is the conventional diagonal mass matrix of the n

egree-of-freedom system. This would then complete the free-

ibration analysis of the cable net. To illustrate the full group-

heoretic computational procedure, we will consider a numerical

xample, and present results for natural frequencies and mode

hapes. 

. Numerical example 

Let us consider a double-layer cable net with the following

tructural and dynamic parameters: 

T 1 = T 2 = 10 kN ; a = 2 m ; k 1 = k 2 = k 3 = 10 kN / m ;
 1 = m 2 = m 3 = 10 kg 

irst, and using the above parameters, we evaluate the [ B ( μ) ] ma-

rices of subspaces S ( μ) from Eqs. (21) , (23) , (26) , (29) , (31) , (33) ,

36) , (38) , (40) and (43) . Next, the inverses of the [ B ( μ) ] matrices

re evaluated, and used in Eq. (18) to generate the column vectors

 d j }. The subspace flexibility matrices [ A 

( μ) ] are then assembled by

utting together the { d j } column vectors as shown by Eq. (19) . The

esults for the ten subspaces are as follows (with the elements of

 A 

( μ) ] having units of m/kN): 

A 

(1) 
]

= 

⎡ 

⎣ 

2 
77 

3 
385 

1 
770 

3 
770 

12 
385 

2 
385 

1 
770 

4 
385 

27 
770 

⎤ 

⎦ ;
[
A 

(2) 
]

= 

[
1 

45 

]
;

A 

(3) 
]

= 

[
1 

35 

]
;

[
A 

(4) 
]

= 

⎡ 

⎣ 

22 
855 

1 
171 

1 
1710 

1 
342 

4 
171 

2 
855 

1 
1710 

4 
855 

7 
342 

⎤ 

⎦ 

A 

(5 A ) 
]

= 

⎡ 

⎢ ⎢ ⎢ ⎣ 

13 
220 

1 
110 

2 
55 

1 
110 

1 
110 

13 
220 

2 
55 

1 
110 

1 
55 

1 
55 

4 
55 

1 
55 

1 
220 

1 
220 

1 
55 

3 
55 

⎤ 

⎥ ⎥ ⎥ ⎦ 

;
[
A 

(6) 
]

= 

[
1 

25 

]
;

[
A 

(7) 
]

= 

⎡ 

⎣ 

1 
15 

1 
15 

1 
30 

1 
30 

2 
15 

1 
15 

1 
30 

2 
15 

1 
6 

⎤ 

⎦ 

[
A 

(8) 
]

= 

⎡ 

⎣ 

7 
125 

3 
125 

1 
250 

3 
250 

6 
125 

1 
125 

1 
250 

2 
125 

9 
250 

⎤ 

⎦ ;
[
A 

(9) 
]

= 

[
1 

15 

]
;

A 

(10 A ) 
]

= 

⎡ 

⎢ ⎢ ⎢ ⎣ 

61 
2360 

1 
1180 

2 
295 

1 
1180 

1 
1180 

61 
2360 

2 
295 

1 
1180 

1 
295 

1 
295 

8 
295 

1 
295 

1 
2360 

1 
2360 

1 
295 

3 
118 

⎤ 

⎥ ⎥ ⎥ ⎦ 
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Table 2 

Deflection ordinates of the three mode shapes of subspace S (1) of the numerical example. 

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

U 

(1) 
1 

1.00 0.50 0.50 1.00 0.50 –1.00 –1.00 0.50 0.50 –1.00 –1.00 0.50 1.00 0.50 0.50 1.00 

U 

(1) 
2 

1.00 –0.62 –0.62 1.00 –0.62 0.38 0.38 –0.62 –0.62 0.38 0.38 –0.62 1.00 –0.62 –0.62 1.00 

U 

(1) 
3 

1.00 1.62 1.62 1.00 1.62 2.62 2.62 1.62 1.62 2.62 2.62 1.62 1.00 1.62 1.62 1.00 

Node 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

U 

(1) 
1 

1.00 0.50 0.50 1.00 0.50 –1.00 –1.00 0.50 0.50 –1.00 –1.00 0.50 1.00 0.50 0.50 1.00 

U 

(1) 
2 

1.00 –0.62 –0.62 1.00 –0.62 0.38 0.38 –0.62 –0.62 0.38 0.38 –0.62 1.00 –0.62 –0.62 1.00 

U 

(1) 
3 

1.00 1.62 1.62 1.00 1.62 2.62 2.62 1.62 1.62 2.62 2.62 1.62 1.00 1.62 1.62 1.00 

Table 3 

Deflection ordinates of the mode shape of subspace S (2) of the numerical example. 

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

U 

(2) 
1 

0 + 1.00 –1.00 0 –1.00 0 0 + 1.00 + 1.00 0 0 –1.00 0 –1.00 + 1.00 0 

Node 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

U 

(2) 
1 

0 + 1.00 –1.00 0 –1.00 0 0 + 1.00 + 1.00 0 0 –1.00 0 –1.00 + 1.00 0 
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The subspace mass matrices are written down from Eqs. (44) to

(46) as follows (with the elements of [ M 

( μ) ] having units of kg): 

[
M 

(1) 
]

= 

[
M 

(4) 
]

= 

[
M 

(7) 
]

= 

[
M 

(8) 
]

= 

[ 

10 0 0 

0 10 0 

0 0 10 

] 

[
M 

(2) 
]

= 

[
M 

(3) 
]

= 

[
M 

(6) 
]

= 

[
M 

(9) 
]

= [ 10 ] 

[
M 

(5 A ) 
]

= 

[
M 

(10 A ) 
]

= 

⎡ 

⎢ ⎣ 

10 0 0 0 

0 10 0 0 

0 0 10 0 

0 0 0 10 

⎤ 

⎥ ⎦ 

The eigenvalues λ of each subspace are obtained by solving

Eq. (48) , which yields r roots of the characteristic equation, where

r is the dimension of the subspace. Now λ= 1/ ω 

2 , and the nat-

ural frequency of vibration f (cycles per second) is related to the

circular frequency ω (radians per second) through the usual rela-

tionship ω = 2 π f . Therefore, f = 1 / ( 2 π
√ 

λ) . For each subspace, the

eigenvector 
 i corresponding to the eigenvalue λi is obtained by

solving Eq. (50) . For our numerical example, results for subspace

eigenvalues λi ( i = 1, 2, …, r ), natural frequencies f i and eigenvec-

tors 
 i are as follows: 

Subspace S (1) 

λ1 = 0 . 2857 λ2 = 0 . 2165 λ3 = 0 . 4198 

f 1 = 0 . 298 Hz f 2 = 0 . 342 Hz f 3 = 0 . 246 Hz 


1 = 

[ 

1 . 0 0 0 

0 . 500 

−1 . 0 0 0 

] 


2 = 

[ 

1 . 0 0 0 

−0 . 618 

0 . 382 

] 


3 = 

[ 

1 . 0 0 0 

1 . 618 

2 . 618 

] 

Subspace S (2) 

λ1 = 0 . 2222 f 1 = 0 . 338 Hz 
1 = 1 . 0 0 0 

Subspace S (3) 

λ1 = 0 . 2857 f 1 = 0 . 298 Hz 
1 = 1 . 0 0 0 
Subspace S (4) 

1 = 0 . 2222 λ2 = 0 . 1780 λ3 = 0 . 2957 

f 1 = 0 . 338 Hz f 2 = 0 . 377 Hz f 3 = 0 . 293 Hz 

1 = 

[ 

1 . 0 0 0 

−0 . 500 

−1 . 0 0 0 

] 


2 = 

[ 

1 . 0 0 0 

−1 . 618 

2 . 618 

] 


3 = 

[ 

1 . 0 0 0 

0 . 618 

0 . 382 

] 

Subspace S (5 A ) and S (5 B ) (these have identical solutions) 

1 = 1 . 1338 λ2 = 0 . 50 0 0 λ3 = 0 . 50 0 0 λ4 = 0 . 3207 

f 1 = 0 . 149 Hz f 2 = 0 . 225 Hz f 3 = 0 . 225 Hz f 4 = 0 . 281 Hz 

1 = 

⎡ 

⎢ ⎣ 

1 . 0 0 0 

1 . 0 0 0 

1 . 118 

0 . 500 

⎤ 

⎥ ⎦ 


2 = 

⎡ 

⎢ ⎣ 

1 . 0 0 0 

0 

0 

−1 . 0 0 0 

⎤ 

⎥ ⎦ 


3 = 

⎡ 

⎢ ⎣ 

1 . 0 0 0 

−1 . 0 0 0 

0 

0 

⎤ 

⎥ ⎦ 


4 = 

⎡ 

⎢ ⎣ 

1 . 0 0 0 

1 . 0 0 0 

−1 . 118 

0 . 500 

⎤
⎥⎦

Subspace S (6) 

1 = 0 . 40 0 0 f 1 = 0 . 252 Hz 
1 = 1 . 0 0 0 

Subspace S (7) 

1 = 0 . 6 6 67 λ2 = 0 . 3820 λ3 = 2 . 6180 

f 1 = 0 . 195 Hz f 2 = 0 . 258 Hz f 3 = 0 . 0984 Hz 

1 = 

[ 

1 . 0 0 0 

0 . 500 

−1 . 0 0 0 

] 


2 = 

[ 

1 . 0 0 0 

−0 . 618 

0 . 382 

] 


3 = 

[ 

1 . 0 0 0 

1 . 618 

2 . 618 

] 

Subspace S (8) 

1 = 0 . 40 0 0 λ2 = 0 . 2764 λ3 = 0 . 7236 

f 1 = 0 . 252 Hz f 2 = 0 . 303 Hz f 3 = 0 . 187 Hz 

1 = 

[ 

1 . 0 0 0 

−0 . 500 

−1 . 0 0 0 

] 


2 = 

[ 

1 . 0 0 0 

−1 . 618 

2 . 618 

] 


3 = 

[ 

1 . 0 0 0 

0 . 618 

0 . 382 

] 

Subspace S (9) 

1 = 0 . 6 6 67 f 1 = 0 . 195 Hz 
1 = 1 . 0 0 0 

Subspace S (10 A ) and S (10 B ) (these have identical solutions) 

1 = 0 . 3470 λ2 = 0 . 2500 λ3 = 0 . 2500 λ4 = 0 . 1954 

f 1 = 0 . 270 Hz f 2 = 0 . 318 Hz f 3 = 0 . 318 Hz f 4 = 0 . 360 Hz 

1 = 

⎡ 

⎢ ⎣ 

1 . 0 0 0 

1 . 0 0 0 

1 . 118 

0 . 500 

⎤ 

⎥ ⎦ 


2 = 

⎡ 

⎢ ⎣ 

1 . 0 0 0 

0 

0 

−1 . 0 0 0 

⎤ 

⎥ ⎦ 


3 = 

⎡ 

⎢ ⎣ 

1 . 0 0 0 

−1 . 0 0 0 

0 

0 

⎤ 

⎥ ⎦ 


4 = 

⎡ 

⎢ ⎣ 

1 . 0 0 0 

1 . 0 0 0 

−1 . 118 

0 . 500 

⎤
⎥⎦
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Fig. 16. Vibration modes of subspace S (10 A ) of numerical example: (a) U 

(10 A ) 
1 

; (b) U 

(10 A ) 
2 

; (c) U 

(10 A ) 
3 

; (d) U 

(10 A ) 
4 

. (For interpretation of the references to color in this figure, the 

reader is referred to the web version of this article.) 
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o illustrate how mode shapes in the full space of the prob-

em are generated, let us consider subspaces S (1) , S (2) and S (10 A ) ,

hich are representative of 3-dimensional, 1-dimensional and 4-

imensional subspaces, and which also belong to the extensional

ibration modes whose natural frequencies depend on the spring

tiffness parameter k . As explained in Section 7 , eigenvectors { U i }

n the 32-dimensional vector space of the original problem are

btained by simply allocating the values of subspace eigenvector

omponents to every cable node that is associated with the ba-

is vector in question, taking into account the correct signs of the

asis-vector components as given by Eqs. (4) to (15). Since the con-

entional diagonal mass matrix [ M ] consists of identical elements

 ii ( = 10 kg), it means the { H i } and { U i } vectors in Eq. (51) are of

dentical form (except for a scalar multiplier), and so the system

igenvectors { U i } may be taken as the actual deflection ordinates

f the cable net. 

Table 2 gives the 32 deflection ordinates of the three mode

hapes of subspace S (1) in the full space of the problem, the modes

eing denoted by U 

(1) 
1 

, U 

(1) 
2 

and U 

(1) 
3 

. Ordinates of nodes of the

op layer (1 to 16) appear in the upper part of the table; ordinates

f nodes of the bottom layer (17 to 32) appear in the lower part.

ositive values denote displacement towards the horizontal plane
f symmetry of the cable net (i.e. downwards for top-layer nodes,

nd upwards for bottom-layer nodes). Table 3 gives the 32 deflec-

ion ordinates of the one mode shape of subspace S (2) in the full

pace of the problem, the mode being denoted by U 

(2) 
1 

. These are

ither + 1 or − 1, depending on the sign of the basis-vector com-

onent of the node in question as given by Eq. (5) ; zero values

enote nodes that do not participate in the motion (i.e. station-

ry nodes). Table 4 gives the 32 deflection ordinates of the four

ode shapes of subspace S (10 A ) in the full space of the problem,

he modes being denoted by U 

(10 A ) 
1 

, U 

(10 A ) 
2 

, U 

(10 A ) 
3 

and U 

(10 A ) 
4 

. The

esults in Tables 2 –4 are plotted in Figs. 14 –16 respectively, where

he displaced profiles of the cables are shown in red, and the ver-

ical displacements of the nodes are shown by the blue lines. The

lots allow visualisation of the vibration pattern of the modes; in

egions where the position of the displaced cable net is not too

lear, reference should be made to the values in the tables. 

The results of this numerical study show that the 32 natu-

al frequencies of the cable net occur in a relatively narrow band

from f = 0.098 Hz to f = 0.377 Hz). If external excitation forces also

ie within this range, resonance may be avoided by increasing the

ension in the cables or the stiffness of the inter-layer coupling,

o increase the natural frequencies of the cable net beyond the
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Table 4 

Deflection ordinates of the four mode shapes of subspace S (10 A ) of the numerical example. 

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

U 

(10 A ) 
1 

1.00 1.12 0.50 0 1.12 1.00 0 –0.50 0.50 0 –1.00 –1.12 0 –0.50 –1.12 –1.00 

U 

(10 A ) 
2 

1.00 0 –1.00 0 0 0 0 1.00 –1.00 0 0 0 0 1.00 0 –1.00 

U 

(10 A ) 
3 

1.00 0 0 0 0 –1.00 0 0 0 0 1.00 0 0 0 0 –1.00 

U 

(10 A ) 
4 

1.00 –1.12 0.50 0 –1.12 1.00 0 –0.50 0.50 0 –1.00 1.12 0 –0.50 1.12 –1.00 

Node 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

U 

(10 A ) 
1 

1.00 1.12 0.50 0 1.12 1.00 0 –0.50 0.50 0 –1.00 –1.12 0 –0.50 –1.12 –1.00 

U 

(10 A ) 
2 

1.00 0 –1.00 0 0 0 0 1.00 –1.00 0 0 0 0 1.00 0 –1.00 

U 

(10 A ) 
3 

1.00 0 0 0 0 –1.00 0 0 0 0 1.00 0 0 0 0 –1.00 

U 

(10 A ) 
4 

1.00 –1.12 0.50 0 –1.12 1.00 0 –0.50 0.50 0 –1.00 1.12 0 –0.50 1.12 –1.00 
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excitable range. Inter-layer damping may also be installed to con-

trol the vibrations. The numerical results also reveal the existence

of modes of different symmetry type but having the same natu-

ral frequencies (compare: f 1 of subspace S (1) with f 1 of subspace

S (3) ; f 1 of subspace S (4) with f 1 of subspace S (2) ; f 1 of subspace S (7) 

with f 1 of subspace S (9) ; f 1 of subspace S (8) with f 1 of subspace S (6) )

and modes of the same symmetry type having coincident natural

frequencies (compare: f 2 and f 3 for subspaces S (5 A ) and S (10 A ) ). All

these phenomena are consequencies of symmetry. 

9. Summary and conclusions 

The group-theoretic study of the vibration characteristics of

double-layer cable nets of D 4 h symmetry, commenced in a previ-

ous paper ( Zingoni, 2018 ), has now been concluded. The first paper

focussed on qualitative aspects of the problem, while the present

paper has considered computational aspects. In the first paper, we

used group theory to predict the type of symmetries which the vi-

bration modes are going to have, the number of modes that will

exhibit a given type of symmetry, the existence of pairs of modes

of the same natural frequency, and the nature of the symmetry as-

sociated with such paired modes. By examining the dimensions of

the various subspaces into which the original vector space of the

problem decomposes, we also obtained a very good sense of the

reduction in computational effort to be expected in performing the

vibration analysis via the vector-space decomposition afforded by

group theory. 

In the present paper, we have presented the complete group-

theoretic formulation of the vibration problem of the D 4 h double-

layer cable net. On the basis of the subspace basis vectors that

were derived in the first paper, we have derived the equilibrium

matrices for each subspace (i.e. the B ( μ) matrices) in explicit form,

and shown how the symmetry-adapted flexibility matrices for the

subspaces (i.e. the A 

( μ) matrices) are obtained from the B ( μ) ma-

trices. The assembly of the symmetry-adapted mass matrix for

each subspace has also been explained. This has been followed by

the formulation of the eigenvalue problem within the independent

subspaces. The roots of the characteristic equation for a given sub-

space yields the eigenvalues of that subspace, which are a subset

of the real eigenvalues of the original problem. Finally, the proce-

dure for obtaining eigenvectors within the subspaces, and convert-

ing these into eigenvectors in the full vector space of the problem

(i.e. actual mode shapes of the cable net), has been explained. The

full computational procedure has been illustrated by consideration

of a numerical example. 

For the double-layer cable net of D 4 h symmetry, the present

study has revealed further insights on transverse-extension modes

which do not exist in the case of a single-layer cable net of C 4 v 
symmetry ( Zingoni, 1996 ). The spring-like coupling between the

two layers of the cable net permits the layers to move indepen-
ently of each other, thus doubling the total number of system de-

rees of freedom, in comparison with single-layer cable nets. It is

he occurrence of these additional transverse-extension modes (or

breathing” modes) that has distinguished the present study from

revious work ( Zingoni, 1996 ). 

Thus, and by examination of the results of Section 5 , we see

hat the B ( μ) matrices for subspaces S (1) , S (2) , S (3) , S (4) and S (10 A )

eature the stiffness parameter k i ( i being 1, 2 or 3) associated with

he coupling between the two layers of the cable net, and hence

epresent the transverse-extension modes of the cable net. On the

ther hand, the B ( μ) matrices for subspaces S (5 A ) , S (6) , S (7) , S (8) and

 

(9) are independent of k i , showing that the two layers move to-

ether in the same direction without relative separation, as if they

ere one layer. Thus these subspaces have modes (and natural fre-

uencies) which are identical to those of the single-layer cable net.

Detailed consideration of a numerical example has illustrated

he procedure for the calculation of eigenvalues and eigenvectors

f the problem, hence natural frequencies and mode shapes of

he cable net. The numerical results have revealed the existence

f modes of different symmetry type that have the same natu-

al frequencies, as well as modes of the same symmetry type that

ave coincident natural frequencies; all these phenomena are con-

equencies of symmetry. 

For the problem in question, it has been shown how the group-

heoretic procedure simplifies the determination of eigenvalues. In-

tead of tackling a 32 d.o.f. system and eventually having to solve

 polynomial equation of degree 32, the group-theoretic approach

as decomposed the problem into ten subspaces of smaller dimen-

ions (the highest subspace dimension being only 4), which yield

en polynomial equations of smaller degree (the highest degree be-

ng only 4). This simplification represents a drastic reduction in

omputational effort. For double-layer cable nets that may be en-

isaged as long-span roofing solutions, or as deployable mesh re-

ector antennas for space applications ( Li et al., 2013 ) (where the

ymmetry group D nh is of higher order than D 4 h , and the cable

rrangement is more complex), the total number of nodes may

e very large, making it more worthwhile to take advantage of a

roup-theoretic computational strategy. 
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