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a b s t r a c t 

Coupling shallow cable nets into multi-layer configurations offers the possibility of altering the vibra- 

tion properties of single-layer systems in a beneficial way. When members of appropriate stiffness and 

damping characteristics are employed as coupling devices, there will be a dynamic interaction between 

the motions of the layers, with the combined system expected to exhibit a higher stiffness and damping 

response than the individual layers. Vertical coupling of two identical single-layer cable nets of C 4 v sym- 

metry results in a double-layer configuration of D 4 h symmetry, the vertical motions of which are strongly 

influenced by the symmetry properties of the configuration as well as the stiffness and damping prop- 

erties of the coupling members. By considering a 32-node double-layer cable net as a case study, the 

present investigation employs group theory to reveal important insights on the vibration characteristics 

of cable nets of the type in question, at the same time laying out a computational framework for an 

efficient vibration analysis of such systems. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Cable nets find application as lightweight roofing systems for

ong spans ( Otto, 1966 ; Irvine, 1981 ; Szabo and Kollar, 1984 ;

ilnay, 1990 ). They may be formed by prestressing a set of cables

unning in one direction against another set of cables running in

he perpendicular direction, with the two systems of cables being

urved in opposite directions. The result is an orthogonal net ca-

able of resisting external loads, and the stiffness of this structure

s very much a function of the tensile forces in the individual ca-

les. In other arrangements, three or more cable systems may be

mployed, with these being inclined at angles other than 90 °. 
In many roofing applications, cable nets are usually shallow,

ith the vertical rise (or fall) of the net being relatively small in

omparison with the lateral dimensions of the net. For present pur-

oses, cable nets may be considered as shallow if the rise-to-span

atio is less than 1/5. For such shallow nets, the reference plane

or transverse motions may be taken as horizontal, an approach

imilar to the approximation often adopted in the static analysis of

hallow shells ( Zingoni, 1997 ). In the present investigation, we will

e interested only in the small transverse motions (i.e. vertical vi-

rations) of shallow cable nets, where one set of cables is assumed

o run in the x coordinate direction and the other set of cables is

ssumed to run in the y coordinate direction, with the transverse

irection being vertical and denoted by the z axis. 
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The motion of the cable net will be represented by discrete

asses located at the intersections of the cables, and the cables

ill be assumed to have tensile stiffness but no mass. In the

odelling of the physical system, all the mass of the cables (and

ny additional mass contributed by roof cladding and other fit-

ings) is lumped at the nodes of the cable net. Lumped-parameter

odelling is not as exact as distributed-parameter modelling, but

or the purposes of gaining important insights on the key fea-

ures of the vibration response of the system, it is adequate. Un-

ike distributed-parameter modelling which results in partial dif-

erential equations of motion, lumped-parameter modelling re-

ults in ordinary differential equations which are simpler to solve

 Zingoni, 2015 ). 

Other assumptions that we will make are that the tensions in

he cables are relatively large, and the transverse displacements of

he cable net remain relatively small during vibration, so that the

agnitudes of the tensile forces in the cables do not change appre-

iably during the motion. Moreover, the friction between the cables

t their intersections is considered to be negligible, so that the ten-

ile force in a given cable remains practically constant throughout

ts length. These assumptions can be realised to a very good degree

n many practical situations. 

The dynamic behaviour of cable nets has been the subject

f numerous investigations. While the response of cable nets to

tatic loads and time-varying excitations is generally characterised

y geometric non-linearities ( Siev, 1963 ; Buchholdt et al., 1968 ;

vovich and Pokrovskii, 1991 ), essentially linear techniques may
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Fig. 1. A single-layer cable net with four nodes and C 4 v symmetry. 
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Fig. 2. Vertical section in the plane of cable AA of the single-layer cable net with 

four nodes. The vertical degrees of freedom of the masses at nodes 1 and 2 are v 1 
and v 2 . 

Fig. 3. Vertical coupling of two identical single-layer cable nets of C 4 v symmetry to 

form a double-layer cable net of D 4 h symmetry. The coupling is illustrated in the 

vertical plane of cable AA of Fig. 1 (cable A ′ A ′ being its mirror image in a horizon- 

tal plane of symmetry). The connecting devices are modelled as linear springs of 

stiffness k . The vertical degrees of freedom of the masses at nodes {1, 2, 3, 4} are 

{ v 1 , v 2 , v 3 , v 4 }. 
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be used to investigate their behaviour, provided the displacements

are not too large ( Calladine, 1982 ; Pellegrino and Calladine, 1984 ;

Vilnay and Rogers, 1990 ). 

For reasons to do with function and aesthetics, many cable nets

possess one or more symmetry properties. The symmetry proper-

ties of a structure have a distinct influence upon the static and

kinematic behaviour of the structure ( Zingoni et al., 1995a , 1995b ;

Kangwai et al., 1999 ; Kangwai and Guest, 1999 , 20 0 0 ; Fowler and

Guest, 20 0 0 ; Guest and Fowler, 2007 ; Chen et al., 2015a ), and

special methods employed to analyse this behaviour include

those based on graph theory and its variants ( Kaveh and Ra-

hami, 2004 ; Kaveh and Nikbakht, 2007 , 2010 ; Kaveh and Koohes-

tani, 2008 ; Chen and Feng, 2016 ), and those based on group theory

( Healey, 1988 ; Zlokovic, 1989 ; Ikeda and Murota, 1991 ; Healey and

Treacy, 1991 ; Mohan and Pratap, 2004 ; Zingoni, 1996, 2005, 2008 ,

2012a ; Chen and Feng, 2012 ; Harth and Michelberger, 2016 ). Group

theory is particularly suited to the study of physical systems pos-

sessing complex symmetry properties, and its applications in var-

ious areas of physics and chemistry are well known ( Weyl, 1932 ;

Wigner, 1959 ; Hamermesh, 1962 ; Schonland, 1965 ). Within struc-

tural mechanics, the approach leads to considerable reductions in

computational effort in problems of the vibration, stability and bi-

furcation of structures ( Zingoni, 2009 ), and also affords valuable

insights on structural behaviour ( Zingoni, 2014 ; Chen et al., 2015b ).

Since symmetry is not always easy to identify (particularly in com-

plex structures), a significant amount of effort has also been di-

rected towards developing procedures for the automatic recogni-

tion of symmetry ( Suresh and Sirpotdar, 2006 ; Zingoni, 2012b ). 

In a previous study ( Zingoni, 1996 ), the vibration of single-layer

high-tension shallow cable nets with C 2 v and C 4 v symmetries in

plan (i.e. the symmetries of a rectangle and a square, respectively)

were considered. Through use of group theory, vibration modes

having coincident frequencies were identified, and other predic-

tions (such as the existence of stationary nodes and nodal lines)

were made. In the present work, we employ group theory to study

the vibration characteristics of double-layer cable nets belonging

to the symmetry group D 4 h . Such cable nets are formed when two

single-layer cable nets of C 4 v symmetry are coupled in the verti-

cal direction. The higher-order symmetry of D 4 h cable nets compli-

cates their vibration response, and group theory becomes particu-

larly useful for unravelling the complexities and fully understand-

ing the dynamic response. 

Fig. 1 shows a very simple single-layer cable net comprising

two cables AA and BB in vertical planes parallel to the xz plane,

crossed by two cables CC and DD in vertical planes parallel to the

yz plane, the whole arrangement having the symmetry of a square

(i.e. C 4 v symmetry) in plan. Each cable carries a tensile force of

magnitude T . Equal masses of magnitude m are assumed at each of

the four cable intersections. The self-stressing system has four de-
rees of freedom comprising the vertical motions of each of these

asses. 

Fig. 2 shows the cable net in the vertical plane of cable AA , with

 1 and v 2 being the vertical degrees of freedom of the masses at

odes 1 and 2. When two identical single-layer cable nets of C 4 v 
ymmetry are vertically connected via identical springs, we obtain

 double-layer cable net of D 4 h symmetry. Such coupling is illus-

rated in Fig. 3 , which shows cable AA connected to its mirror-

mage counterpart A 

′ A 

′ via coupling devices of spring stiffness k .

he nodes in this coupling plane are {1, 2, 3, 4}, with associated

ertical degrees of freedom being { v 1 , v 2 , v 3 , v 4 }. Similar coupling

ccurs in the vertical planes of cables BB, CC and DD . 

Coupling of shallow cable nets into double-layer configurations

ffers the possibility of altering the load-carrying and dynamic

haracteristics of single-layer systems in a beneficial way. Before

he benefits of such coupling can be evaluated in a quantitative

ay, it is useful to gain some insights on the vibration behaviour

f double-layer cable nets of D 4 h symmetry, to get a better under-

tanding of how symmetry influences this behaviour. This is the

rimary aim of this paper. 

Earlier studies have already demonstrated the effectiveness of

he group-theoretic formulation in simplifying the analysis of the

ibration of plates, single-layer cable nets and layered space grids

f C nv symmetry, so in terms of the general approach, the present

tudy is similar. However, the key difference is that the D nh con-

gurations considered in the present paper have rotation and re-

ection symmetries not only about one central vertical axis and a

umber of vertical planes passing through this central vertical axis

as with C nv configurations), but they also possess additional rota-

ion symmetries about a number of horizontal axes perpendicular

o the central vertical axis, as well as an additional reflection plane

hat is horizontal (and therefore perpendicular to the central ver-

ical axis). Their symmetry is therefore of higher order, and more

omplex. Previous studies have mostly focused on simpler C nv con-

gurations. 

In terms of vibration behaviour, double-layer cable nets of D nh 

ymmetry exhibit transverse extensional modes (i.e. expansion and

ontraction of the vertical distance between the two layers) which

re irrelevant in the case of single-layer cable nets and other
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Fig. 4. Symmetry planes and rotation axes of right prisms: (a) D 2 h prism and 

(b) D 4 h prism. 
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ingle-layer structures that have been studied in the past. The

pring-like coupling between the two layers permits the upper and

ower layers of the cable net to move independently of each other,

hus doubling the total number of system degrees of freedom,

n comparison with single-layer cable nets (or rigidly connected

ouble-layer cable nets whose layers move up and down together).

t is the occurrence of these additional extensional modes (or

breathing” modes) that distinguishes the present study from all

he previous ones. Group theory will reveal additional new insights

pecific to D nh cable-net configurations. 

The scope of the present study is limited to cable nets whose

onfiguration fully conforms to the symmetry group D nh in terms

f arrangement of members, member properties, pattern of pre-

tressing and support conditions. It should be pointed out that

mall departures from perfect symmetry (due to, for example,

he addition or subtraction of one member, or the inclusion of a

ember whose properties differ from those of the other mem-

ers) may also be handled using techniques based on group the-

ry ( Varkonyi and Domokos, 2007 ), or those based on graphs

 Kaveh and Shojaei, 2015 ). Here, we shall not be concerned with

mperfect symmetry. 

The structure of the rest of the paper is as follows. We will be-

in by outlining some basic concepts of symmetry and group the-

ry, and describe the properties of symmetry groups D 2 h and D 4 h ,

hich are of interest in the present work. This is followed by a de-

cription of the double-layer cable net forming the subject of the

etailed study. Symmetry-adapted freedoms and basis vectors for

he various subspaces of the problem are then derived, and the

ymmetry properties of these subspaces illustrated by means of

asis-vector plots. An analysis of the results is then made, allowing

s to gain some insights on the nature of the modes of vibration of

he cable net. The results also permit an assessment of the compu-

ational benefits of the group-theoretic decomposition to be made.

he concluding remarks indicate how the present work will be ap-

lied to actual computations. 

. Concepts of symmetry and group theory 

A system or an object is said to exhibit symmetry if it can be

urned into one or more new configurations physically indistin-

uishable from the initial configuration through the application of

ne or more symmetry operations. Symmetry operations include

eflections in planes, rotations about axes, or inversions through

he centre. 

A set of elements { α, β , γ , ..., σ , ...} comprises a group G if

he following axioms are satisfied: 

(i) the product γ of any two elements α and β of the group,

which is given by γ = αβ , is a unique element which also

belongs to the group 

(ii) among the elements of G , there is an identity element e

which, when multiplied with any element α of the group,

leaves the element unchanged: e α = αe = α
(iii) each element α of G has an inverse α − 1 also belonging to

the group, such that αα − 1 = α − 1 α = e 

(iv) when three or more elements of G are multiplied, the

order of the multiplication does not affect the result:

α( βγ ) = ( αβ) γ

A group where all elements are symmetry operations consti-

utes a symmetry group . 

.1. Symmetry elements of groups D 2 h and D 4 h 

The symmetry group D 2 h describes the symmetry of a right

rism of rectangular base ( Fig. 4 (a)). It has the following symme-
ry elements with respect to the coordinate directions { x , y , z } and

ssociated orthogonal planes { xy , xz , yz }: 

e : identity element 

C z 
2 
, C x 

2 
, C 

y 
2 

: rotations through an angle of π /2 about the { z , x , y }

axes, respectively 

σ xy , σ xz , σ yz : reflections in the central { xy , xz , yz } planes, re-

spectively 

i : inversion element (reflection through the centre of symmetry

of the configuration) 

Thus symmetry group D 2 h is of order 8, the order of a group

eing the number of symmetry elements making up the group. 

The symmetry group D 4 h describes the symmetry of a right

rism of square base ( Fig. 4 (b)). It has all the eight symmetry ele-

ents of group D 2 h , as well as the following eight additional ele-

ents: 

C 4 , C 
−1 
4 

: rotations about the z axis through angles of π /4

and −π /4, respectively 

C d1 
2 

, C d2 
2 

: rotations through an angle of π /2 about the two diag-

onal axes d 1 and d 2 (these are perpendicular to each other

and at 45 ° to the x and y axes) 

S 4 , S −1 
4 

: rotary-reflections through angles of π /4 and −π /4, re-

spectively, these operations consisting of a rotation about

the z axis through an angle of π /4 or −π /4, followed by a

reflection in the central xy plane (note that the inversion el-

ement i is equivalent to a rotary-reflection through an angle

of π /2, i.e. equivalent to the operation S 2 ) 

σ d 1 , σ d 2 : reflections in the vertical diagonal planes containing

the diagonal axes d 1 and d 2 

Thus the symmetry group D 4 h is of order 16. In considerations

f symmetry groups D nh ( n > 2), the central xy plane is usually

aken to be horizontal and therefore denoted by the subscript h ,

ith the operation σ xy being denoted by σ h , and the operations

 σ xz , σ yz } being denoted as simply { σ x , σ y }; the operation C z 
2 

is

imply written as C 2 . 

Double-layer cable nets may also have symmetries of right

risms based on other regular polygons. The cable-net plan forms
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Fig. 5. Plan views of other polygonal prisms: (a) D 3 h prism; (b) D 6 h prism and 

(c) D 8 h prism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Character table of group D 2 h . 

D 2 h e C z 2 C x 2 C y 
2 

i σ xy σ xz σ yz 

A g 1 1 1 1 1 1 1 1 

B 1 g 1 1 − 1 − 1 1 1 − 1 − 1 

B 2 g 1 − 1 − 1 1 1 − 1 1 − 1 

B 3 g 1 − 1 1 − 1 1 − 1 − 1 1 

A u 1 1 1 1 − 1 − 1 − 1 − 1 

B 1 u 1 1 − 1 − 1 − 1 − 1 1 1 

B 2 u 1 − 1 − 1 1 − 1 1 − 1 1 

B 3 u 1 − 1 1 − 1 − 1 1 1 − 1 

Table 2 

Character table of group D 4 h . 

D 4 h e 
C 4 
C −1 

4 

C 2 
C x 2 

C y 
2 

C d1 
2 

C d2 
2 

i 
S 4 
S −1 

4 

σ h 
σx 

σy 

σd1 

σd2 

A 1 g 1 1 1 1 1 1 1 1 1 1 

A 2 g 1 1 1 − 1 − 1 1 1 1 − 1 − 1 

B 1 g 1 − 1 1 1 − 1 1 − 1 1 1 − 1 

B 2 g 1 − 1 1 − 1 1 1 − 1 1 − 1 1 

E g 2 0 − 2 0 0 2 0 − 2 0 0 

A 1 u 1 1 1 1 1 − 1 − 1 − 1 − 1 − 1 

A 2 u 1 1 1 − 1 − 1 − 1 − 1 − 1 1 1 

B 1 u 1 − 1 1 1 − 1 − 1 1 − 1 − 1 1 

B 2 u 1 − 1 1 − 1 1 − 1 1 − 1 1 − 1 

E u 2 0 − 2 0 0 − 2 0 2 0 0 

2
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shown in Fig. 5 are associated with symmetry groups D 3 h , D 6 h and

D 8 h of order 12, 24 and 32, respectively. 

2.2. Classes of a group 

An element α of a group G is said to be conjugate to the ele-

ment β in the same group if there exists an element ρ in G , such

that α = ρ − 1 β ρ . The collection of all elements formed by evalu-

ating ρ − 1 β ρ for all ρ in the group is called the class of β . The

elements of any finite group can be divided into non-overlapping

classes. The class table of a group is constructed by evaluating

ρ − 1 β ρ for all elements ρ and β of the group, ρ being taken from

the left side and β from the top, the product ρ − 1 β ρ being en-

tered at the intersection of row ρ and column β . Collecting into

a set the distinct elements appearing in each column of the class

table, for all columns of the table, gives the classes of the group.

The identity element e always belongs to a class of its own. 

2.3. Representations of symmetry groups 

Let a set of symmetry operators { α, β , γ , ..., σ , ...} in an n -

dimensional vector space V constitute a group G . The set of ma-

trices describing all the symmetry operators of G , with respect to

a particular basis of the n -dimensional vector space, constitutes an

n -dimensional representation of G . The trace of a matrix represent-

ing an operator σ is called the character of σ , denoted by χ ( σ ). If

the basis of V is changed, a new set of matrices, also constituting a

representation of the group G , results. Since a basis transformation

does not change the trace of a matrix representing a linear opera-

tor in an n -dimensional vector space, this second representation of

G has the same set of characters as the first representation. 

Suppose now that a basis is found with respect to which the

matrices of the group representation are expressed as direct sums

of submatrices that no further change of basis can reduce to ma-

trices of smaller dimensions. Then sets of these submatrices (a set

covering all the symmetry elements of the group) constitute irre-

ducible representations . If a group G of order h has k classes, then

the number of different irreducible representations is finite and

equal to k . 
.4. Character tables 

In any irreducible representation, all group elements belong-

ng to the same class have the same character, since traces of

onjugate elements are equal. Character tables for the various

rreducible representations of common point groups are readily

vailable in the literature ( Hamermesh, 1962 ; Schonland, 1965 ).

ables 1 and 2 show the character tables of groups D 2 h and D 4 h 

of interest in the present study). 

The rows of the character tables correspond to the various ir-

educible representations of the group, which are labelled on the

xtreme left following the usual convention: symbols A and B de-

ote 1-dimensional representations ( A indicating symmetry with

espect to the principal rotation axis C n , and B antisymmetry),

hile E denotes 2-dimensional representations; subscripts g and u

enote symmetry and antisymmetry, respectively, with respect to

he centre of inversion; subscripts 1 and 2 denote symmetry and

ntisymmetry, respectively, with respect to a nonprincipal rotation

xis ( C 2 ). The sets of characters for different irreducible representa-

ions are always different. Any two rows of the character table are

rthogonal, as are any two columns. This means that if any two

ows are written as algebraic row vectors, their dot product is zero,

nd if any two columns are written as algebraic column vectors,

heir dot product is also zero. 

.5. Idempotents 

The group algebra of a group G is the set of all linear combina-

ions of group elements. The group algebra has the properties of

 vector space, and the elements of the group G form a basis of

he group algebra. The centre of the group algebra is the set of all

lements that commute with every element of the group algebra.

or a given class of the group G as defined earlier, the class sum is

he sum of all elements belonging to the class. Class sums form a

asis of the centre of the group algebra. 

Idempotents P ( i ) of the group algebra are its non-zero elements

hich satisfy the relation { P ( i ) } 2 = P ( i ) . Orthogonal idempotents sat-

sfy the relation P ( i ) P ( j ) = 0 if i � = j . They are linearly independent;

he sum of orthogonal idempotents is also an idempotent. 
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Fig. 6. Plan view of 32-node double-layer cable net of D 4 h symmetry. 

P

P

P

P

P

3

 

l  

b  

t  

c  

l  

t  

t

 

p  

p  

s  

t  

a  

i

i  

t  
Idempotents of the centre of the group algebra are linear com-

inations of class sums. An idempotent P ( i ) corresponding to the

rreducible representation R ( i ) , by operating on vectors of the space

 , nullifies every vector which does not belong to the subspace S ( i ) 

f R ( i ) . Thus, out of all the vectors belonging to the group-invariant

ubspaces S (1) , S (2) , ..., S ( k ) , the operator P ( i ) selects all vectors be-

onging to the subspace S ( i ) , and therefore acts as a projection oper-

tor ( Hamermesh, 1962 ) of the subspace S ( i ) . The orthogonal idem-

otents of the centre of the group algebra ( P ( i ) for subspace S ( i ) ;

 = 1, 2, ..., k ) can be written down directly from the character table

sing the relation 

 

(i ) = 

h i 

h 

∑ 

σ

χi ( σ
−1 ) σ (1) 

here h is the order of G (i.e. the number of elements of G ), h i 
s the dimension of the i th irreducible representation (given by

 i = χ i ( e ), the first character of the i th row of the character table),

i is a character of the i th irreducible representation, σ is an el-

ment of G , and σ − 1 its inverse. The idempotents for groups D 2 h 

nd D 4 h are obtained as follows: 

Group D 2 h 

 

(1) = 

1 

8 

(
e + C z 2 + C x 2 + C y 

2 
+ i + σxy + σxz + σyz 

)
(2a) 

 

(2) = 

1 

8 

(
e + C z 2 − C x 2 − C y 

2 
+ i + σxy − σxz − σyz 

)
(2b) 

 

(3) = 

1 

8 

(
e − C z 2 − C x 2 + C y 

2 
+ i − σxy + σxz − σyz 

)
(2c) 

 

(4) = 

1 

8 

(
e − C z 2 + C x 2 − C y 

2 
+ i − σxy − σxz + σyz 

)
(2d) 

 

(5) = 

1 

8 

(
e + C z 2 + C x 2 + C y 

2 
− i − σxy − σxz − σyz 

)
(2e) 

 

(6) = 

1 

8 

(
e + C z 2 − C x 2 − C y 

2 
− i − σxy + σxz + σyz 

)
(2f) 

 

(7) = 

1 

8 

(
e − C z 2 − C x 2 + C y 

2 
− i + σxy − σxz + σyz 

)
(2g) 

 

(8) = 

1 

8 

(
e − C z 2 + C x 2 − C y 

2 
− i + σxy + σxz − σyz 

)
(2h) 

Group D 4 h 

 

(1) = 

1 

16 

(
e + C 4 + C −1 

4 + C 2 + C x 2 + C y 
2 

+ C d1 
2 + C d2 

2 + i + S 4 

+ S −1 
4 + σh + σx + σy + σd1 + σd2 

)
(3a) 

 

(2) = 

1 

16 

(
e + C 4 + C −1 

4 + C 2 − C x 2 − C y 
2 

− C d1 
2 − C d2 

2 + i + S 4 

+ S −1 
4 + σh − σx − σy − σd1 − σd2 

)
(3b) 

 

(3) = 

1 

16 

(
e − C 4 − C −1 

4 + C 2 + C x 2 + C y 
2 

− C d1 
2 − C d2 

2 + i − S 4 

−S −1 
4 + σh + σx + σy − σd1 − σd2 

)
(3c) 

 

(4) = 

1 

16 

(
e − C 4 − C −1 

4 + C 2 − C x 2 − C y 
2 

+ C d1 
2 + C d2 

2 + i − S 4 

−S −1 
4 + σh − σx − σy + σd1 + σd2 

)
(3d) 

 

(5) = 

1 

8 

( 2 e − 2 C 2 + 2 i − 2 σh ) = 

1 

4 

( e − C 2 + i − σh ) (3e) 
 

(6) = 

1 

16 

(
e + C 4 + C −1 

4 + C 2 + C x 2 + C y 
2 

+ C d1 
2 + C d2 

2 − i − S 4 

−S −1 
4 − σh − σx − σy − σd1 − σd2 

)
(3f) 

 

(7) = 

1 

16 

(
e + C 4 + C −1 

4 + C 2 − C x 2 − C y 
2 

− C d1 
2 − C d2 

2 − i − S 4 

−S −1 
4 − σh + σx + σy + σd1 + σd2 

)
(3g) 

 

(8) = 

1 

16 

(
e − C 4 − C −1 

4 + C 2 + C x 2 + C y 
2 

− C d1 
2 − C d2 

2 − i + S 4 

+ S −1 
4 − σh − σx − σy + σd1 + σd2 

)
(3h) 

 

(9) = 

1 

16 

(
e − C 4 − C −1 

4 + C 2 − C x 2 − C y 
2 

+ C d1 
2 + C d2 

2 − i + S 4 

+ S −1 
4 − σh + σx + σy − σd1 − σd2 

)
(3i) 

 

(10) = 

1 

8 

( 2 e − 2 C 2 − 2 i + 2 σh ) = 

1 

4 

( e − C 2 − i + σh ) (3j) 

. A double-layer cable net of D 4 h symmetry 

Fig. 6 shows the horizontal plan view of a 32-node double-

ayer cable net, with the top-layer nodes numbered 1–16 and the

ottom-layer nodes numbered 17–32 as shown. Let us assume that

he 3-dimensional cable net (comprising sets of cables of opposed

urvature) is very shallow. This allows us to approximate the two

ayers of cable nodes as flat horizontal planes, as shown in the ver-

ical sections of Fig. 7 . The overall configuration belongs to symme-

ry group D 4 h . 

With reference to the horizontal plan view of Fig. 6 , the princi-

al rotation axis C n is vertical (i.e. perpendicular to the page) and

asses through the centre of the diagram; it contains the centre of

ymmetry of the whole configuration, which is located midway be-

ween the two layers of the cable net. The vertical C n axis is associ-

ted with the rotation symmetry operations { C 4 , C −1 
4 

, C 2 } . The hor-

zontal reflection plane associated with the symmetry operation σ h 

s located at the level of the centre of symmetry of the configura-

ion. The combination of rotations about the C n axis and reflection
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Fig. 7. Vertical sections of the 32-node double-layer cable net (refer to labels in 

plan view of Fig. 6 ): (a) section A ; (b) section B ; (c) section C and (d) section D . 
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in the horizontal central plane gives rise to the rotary-reflection

operations { S 4 , S −1 
4 

, S 2 } , the last of these being, of course, equiva-

lent to the inversion operation i . 

The four vertical reflection planes associated with the sym-

metry operations { σ x , σ y , σ d 1 , σ d 2 } are indicated by the coordi-

nate axes { x , y } and the diagonal axes { d 1 , d 2 } as shown. These

four vertical planes also contain the nonprincipal C 2 rotation axes

{ C x 
2 
, C 

y 
2 
, C d1 

2 
, C d2 

2 
} which are all horizontal and pass through the

centre of symmetry. 

The cables are assumed to carry prestressing forces of magni-

tude T 1 or T 2 . In plan, the arrangement of cable forces conform to

C 4 v symmetry (as is clear from Fig. 6 ). In elevation, pairs of cables

lying in the same vertical plane have the same prestress force (see

Fig. 7 ). Thus the overall pattern of prestressing also conforms to

the D 4 h symmetry of the structural configuration. 

The symmetry operations of group D 4 h , when applied on the

nodal positions 1–32 of the double-layer cable net, yield three per-

mutation sets: corner nodes {1, 4, 13, 16, 17, 20, 29, 32}, mid-

side nodes {2, 3, 5, 8, 9, 12, 14, 15, 18, 19, 21, 24, 25, 28, 30,

31}, and centre nodes {6, 7, 10, 11, 22, 23, 26, 27}. Consistent

with the requirements of D 4 h symmetry, each node of a given per-

mutation set will be modelled with the same mass, and the ver-

tical members coupling the nodes of a given permutation set will

also be assigned the same stiffness. The masses and coupling stiff-

nesses for the three sets of nodes are denoted by { m 1 , m 2 , m 3 } and

{ k , k , k }, respectively, as illustrated in Fig. 7 . 
1 2 3 
. Symmetry-adapted freedoms and subspace basis vectors 

To generate the symmetry-adapted freedoms of the first sub-

pace of the problem, we apply the first idempotent of the sym-

etry group D 4 h to each of the 32 degrees of freedom of the ca-

le net comprising the vertical motions of the 16 nodes of the

op layer and the 16 nodes of the bottom layer (i.e. v i ( i = 1, 2, ...,

32)). Using the expression for P (1) as given by Eq. (3a) , and apply-

ng its symmetry operations on each freedom v i ( i = 1, 2, ..., 32)

n turn, we obtain 32 symmetry-adapted freedoms (many of which

re equal to each other) as follows: 

 

(1) v 1 = 

1 

16 

(
e + C 4 + C −1 

4 + C 2 + C x 2 + C y 
2 

+ C d1 
2 + C d2 

2 + i + S 4 

+ S −1 
4 + σh + σx + σy + σd1 + σd2 

)
v 1 

= 

1 

16 

( v 1 + v 4 + v 13 + v 16 + v 29 + v 20 + v 17 + v 32 + v 32 

+ v 20 + v 29 + v 17 + v 13 + v 4 + v 1 + v 16 ) 

= 

2 

16 

( v 1 + v 4 + v 13 + v 16 + v 17 + v 20 + v 29 + v 32 ) 

= P (1) v 4 = P (1) v 13 = P (1) v 16 = P (1) v 17 = P (1) v 20 

= P (1) v 29 = P (1) v 32 (4a)

 

(1) v 2 = 

1 

16 

(
e + C 4 + C −1 

4 + C 2 + C x 2 + C y 
2 

+ C d1 
2 + C d2 

2 + i + S 4 

+ S −1 
4 + σh + σx + σy + σd1 + σd2 

)
v 2 

= 

1 

16 

( v 2 + v 8 + v 9 + v 15 + v 30 + v 19 + v 21 + v 28 + v 31 

+ v 24 + v 25 + v 18 + v 14 + v 3 + v 5 + v 12 ) 

= P (1) v 3 = P (1) v 5 = P (1) v 8 = P (1) v 9 = P (1) v 12 = P (1) v 14 

= P (1) v 15 = P (1) v 18 = P (1) v 19 

= P (1) v 21 = P (1) v 24 = P (1) v 25 = P (1) v 28 = P (1) v 30 = P (1) v 31 

(4b)

 

(1) v 6 = 

1 

16 

(
e + C 4 + C −1 

4 + C 2 + C x 2 + C y 
2 

+ C d1 
2 + C d2 

2 + i + S 4 

+ S −1 
4 + σh + σx + σy + σd1 + σd2 

)
v 6 

= 

1 

16 

( v 6 + v 7 + v 10 + v 11 + v 26 + v 23 + v 22 + v 27 + v 27 

+ v 23 + v 26 + v 22 + v 10 + v 7 + v 6 + v 11 ) 

= 

2 

16 

( v 6 + v 7 + v 10 + v 11 + v 22 + v 23 + v 26 + v 27 ) 

= P (1) v 7 = P (1) v 10 = P (1) v 11 = P (1) v 22 = P (1) v 23 

= P (1) v 26 = P (1) v 27 (4c)

We may select any set of linearly independent symmetry-

dapted freedoms as basis vectors for the subspace. Of the ob-

ained 32 symmetry-adapted freedoms, there are only three lin-

arly independent ones. Dropping the scalar multipliers (1/16 or

/16) in the above expressions, the following three symmetry-

dapted freedoms may be taken as the basis vectors of the first

ubspace: 

Basis vectors for subspace S (1) 

(1) 
1 

= v 1 + v 4 + v 13 + v 16 + v 17 + v 20 + v 29 + v 32 (5a)

(1) 
2 

= v 2 + v 3 + v 5 + v 8 + v 9 + v 12 + v 14 + v 15 + v 18 + v 19 + v 21 

+ v 24 + v 25 + v 28 + v 30 + v 31 (5b)

(1) = v 6 + v 7 + v 10 + v 11 + v 22 + v 23 + v 26 + v 27 (5c)

3 
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Thus subspace S (1) of the 32-node cable-net system is 3-

imensional. 

Similarly, the symmetry-adapted freedoms for subspace S (2) are

btained on the basis of idempotent P (2) . Using the expression for

 

(2) as given by Eq. (3b) , and applying its symmetry operations on

ach freedom v i ( i = 1, 2, ..., 32) in turn, we obtain 32 symmetry-

dapted freedoms as follows: 

 

(2) v 1 = 

1 

16 

(
e + C 4 + C −1 

4 + C 2 − C x 2 − C y 
2 

− C d1 
2 − C d2 

2 + i + S 4 

+ S −1 
4 + σh − σx − σy − σd1 − σd2 

)
v 1 

= 

1 

16 

( v 1 + v 4 + v 13 + v 16 − v 29 − v 20 − v 17 − v 32 + v 32 

+ v 20 + v 29 + v 17 − v 13 − v 4 − v 1 − v 16 ) 

= 0 = P (2) v 4 = P (2) v 13 = P (2) v 16 = P (2) v 17 = P (2) v 20 

= P (2) v 29 = P (2) v 32 (6a) 

 

(2) v 2 = 

1 

16 

(
e + C 4 + C −1 

4 + C 2 − C x 2 − C y 
2 

− C d1 
2 − C d2 

2 + i + S 4 

+ S −1 
4 + σh − σx − σy − σd1 − σd2 

)
v 2 

= 

1 

16 

( v 2 + v 8 + v 9 + v 15 − v 30 − v 19 − v 21 − v 28 + v 31 

+ v 24 + v 25 + v 18 − v 14 − v 3 − v 5 − v 12 ) 

= −P (2) v 3 = −P (2) v 5 = P (2) v 8 = P (2) v 9 = −P (2) v 12 

= −P (2) v 14 = P (2) v 15 = P (2) v 18 = −P (2) v 19 

= −P (2) v 21 = P (2) v 24 = P (2) v 25 = −P (2) v 28 

= −P (2) v 30 = P (2) v 31 (6b) 

 

(2) v 6 = 

1 

16 

(
e + C 4 + C −1 

4 + C 2 − C x 2 − C y 
2 

− C d1 
2 − C d2 

2 + i + S 4 

+ S −1 
4 + σh − σx − σy − σd1 − σd2 

)
v 6 

= 

1 

16 

( v 6 + v 7 + v 10 + v 11 − v 26 − v 23 − v 22 − v 27 + v 27 

+ v 23 + v 26 + v 22 − v 10 − v 7 − v 6 − v 11 ) 

= 0 = P (2) v 7 = P (2) v 10 = P (2) v 11 = P (2) v 22 = P (2) v 23 

= P (2) v 26 = P (2) v 27 (6c) 

There are 16 non-zero symmetry-adapted freedoms, which are

ll linearly dependent (either identical to each other or only dif-

erent with regard to sign). We therefore have only one indepen-

ent symmetry-adapted freedom. Disregarding the scalar multi-

lier 1/16, the following symmetry-adapted freedom may be taken

s the basis vector of the second subspace: 

Basis vector for subspace S (2) 

(2) 
1 

= v 2 − v 3 − v 5 + v 8 + v 9 − v 12 − v 14 + v 15 + v 18 − v 19 − v 21 

+ v 24 + v 25 − v 28 − v 30 + v 31 (7) 

Thus subspace S (2) of the 32-node cable-net system is 1-

imensional. We proceed in the same way for the rest of the sub-

paces of the problem, using the idempotent for each subspace

i.e. idempotent P ( j ) for subspace S ( j ) ) to generate the symmetry-

dapted freedoms for that subspace, and then selecting a set of

inearly independent symmetry-adapted freedoms as the basis vec-

ors for the subspace. The results are as follows: 

Basis vector for subspace S (3) 

(3) 
1 

= v 2 + v 3 − v 5 − v 8 − v 9 − v 12 + v 14 + v 15 + v 18 + v 19 

−v 21 − v 24 − v 25 − v 28 + v 30 + v 31 (8) 

Basis vectors for subspace S (4) 

(4) = v 1 − v 4 − v 13 + v 16 + v 17 − v 20 − v 29 + v 32 (9a) 

1 
(4) 
2 

= v 2 − v 3 + v 5 − v 8 − v 9 + v 12 − v 14 + v 15 + v 18 − v 19 

+ v 21 − v 24 − v 25 + v 28 − v 30 + v 31 (9b) 

(4) 
3 

= v 6 − v 7 − v 10 + v 11 + v 22 − v 23 − v 26 + v 27 (9c) 

Basis vectors for subspace S (5) 

(5) 
1 

= v 1 − v 16 − v 17 + v 32 (10a) 

(5) 
2 

= v 2 − v 15 − v 18 + v 31 (10b) 

(5) 
3 

= v 3 − v 14 − v 19 + v 30 (10c) 

(5) 
4 

= v 4 − v 13 − v 20 + v 29 (10d) 

(5) 
5 

= v 5 − v 12 − v 21 + v 28 (10e) 

(5) 
6 

= v 6 − v 11 − v 22 + v 27 (10f) 

(5) 
7 

= v 7 − v 10 − v 23 + v 26 (10g) 

(5) 
8 

= v 8 − v 9 − v 24 + v 25 (10h) 

Basis vectors for subspace S (6) 

(6) 
1 

= v 2 − v 3 − v 5 + v 8 + v 9 − v 12 − v 14 + v 15 − v 18 + v 19 

+ v 21 − v 24 − v 25 + v 28 + v 30 − v 31 (11) 

Basis vectors for subspace S (7) 

(7) 
1 

= v 1 + v 4 + v 13 + v 16 − v 17 − v 20 − v 29 − v 32 (12a) 

(7) 
2 

= v 2 + v 3 + v 5 + v 8 + v 9 + v 12 + v 14 + v 15 − v 18 − v 19 

−v 21 − v 24 − v 25 − v 28 − v 30 − v 31 (12b) 

(7) 
3 

= v 6 + v 7 + v 10 + v 11 − v 22 − v 23 − v 26 − v 27 (12c) 

Basis vectors for subspace S (8) 

(8) 
1 

= v 1 − v 4 − v 13 + v 16 − v 17 + v 20 + v 29 − v 32 (13a) 

(8) 
2 

= v 2 − v 3 + v 5 − v 8 − v 9 + v 12 − v 14 + v 15 − v 18 + v 19 

−v 21 + v 24 + v 25 − v 28 + v 30 − v 31 (13b) 

(8) 
3 

= v 6 − v 7 − v 10 + v 11 − v 22 + v 23 + v 26 − v 27 (13c) 

Basis vector for subspace S (9) 

(9) 
1 

= v 2 + v 3 − v 5 − v 8 − v 9 − v 12 + v 14 + v 15 − v 18 − v 19 

+ v 21 + v 24 + v 25 + v 28 − v 30 − v 31 (14) 

Basis vectors for subspace S (10) 

(10) 
1 

= v 1 − v 16 + v 17 − v 32 (15a) 

(10) 
2 

= v 2 − v 15 + v 18 − v 31 (15b) 

(10) = v 3 − v 14 + v 19 − v 30 (15c) 

3 
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Fig. 8. Basis vectors of subspace S (1) of the 32-node double-layer cable net: 

(a) 	(1) 
1 

; (b) 	(1) 
2 

and (c) 	(1) 
3 

. 

Fig. 9. Basis vector of subspace S (2) of the 32-node double-layer cable net: 	(2) 
1 . 

Fig. 10. Basis vector of subspace S (3) of the 32-node double-layer cable net: 	(3) 
1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Basis vectors of subspace S (4) of the 32-node double-layer cable net: 

(a) 	(4) 
1 

; (b) 	(4) 
2 

and (c) 	(4) 
3 

. 
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	(10) 
4 

= v 4 − v 13 + v 20 − v 29 (15d)

	(10) 
5 

= v 5 − v 12 + v 21 − v 28 (15e)

	(10) 
6 

= v 6 − v 11 + v 22 − v 27 (15f)

	(10) 
7 

= v 7 − v 10 + v 23 − v 26 (15g)

	(10) 
8 

= v 8 − v 9 + v 24 − v 25 (15h)

The symmetry types of the 10 subspaces of the problem may

be visualised by plotting the coordinates of the basis vectors at the

nodes of the double-layer grid. Figs. 8 –17 show such basis-vector

plots for all the subspaces. The grid lines in the diagrams corre-

spond to those of Fig. 6 , but in plotting a given basis vector, only

the nodes associated with the components of the basis vector are

shown as black dots at the corresponding nodal locations on the

grid. As an example, basis vector 	(1) 
1 

of subspace S (1) has eight

components { v 1 , v 4 , v 13 , v 16 , v 17 , v 20 , v 29 , v 32 } as given by Eq. (5a) , so in

Fig. 8 (a), only the nodes {1, 4, 13, 16, 17, 20, 29, 32} are shown

in the diagram. In all the diagrams, the centre of symmetry of the

configuration is marked by the dot in the middle. The numbering

of the nodes and the plotting of basis-vector components is in ac-

cordance with the following convention: 
1. At a given nodal location (marked by a black dot), the smaller

number (in the range 1–16) always refers to the top-layer node,

while the larger number (in the range 17–32) refers to the

bottom-layer node. The numbers refer to the nodal location (i.e.

the dot), not the arrows. 

2. At a given nodal location, the outer arrow refers to the node

in the top layer of the cable net; the inner arrow refers to the

node in the bottom layer of the cable net. 

3. Arrows pointing towards the centre of the diagram denote pos-

itive basis-vector components; arrows pointing away from the

centre denote negative basis-vector components. 

4. The components of symmetry-adapted freedoms are actually

vertical displacements at the relevant nodes of the cable net.

Positive values of components of symmetry-adapted freedoms

(i.e. positive values of basis-vector components) correspond

to vertical displacements towards the central horizontal plane

of symmetry of the double-layer configuration (i.e. downward

movement for top-layer nodes and upward movement for

bottom-layer nodes). 

We observe that basis vectors belonging to the same subspace

ave the same symmetry type, and this symmetry type (combi-

ations of symmetry and anti-symmetry properties with respect

o the one horizontal and four vertical planes of symmetry) is

ifferent for each subspace. In mathematical terms, a basis vec-

or belonging to a given subspace will be orthogonal to every

ther vector that does not belong to the same subspace. When

he double-layer grid experiences small vertical vibrations, the ob-

erved modes of vibration will conform to these same symmetry

ypes. We will come back to this point later. 

Subspaces S (5) and S (10) are associated with 2-dimensional irre-

ucible representations E g and E u of the symmetry group D 4 h (refer

o Table 2 ). We therefore expect these subspaces to be associated

ith repeated eigenvalues. Taking subspace S (5) , it should be pos-

ible to linearly combine the basis vectors spanning the subspace

n such a way that we create two new sets of vectors that are or-

hogonal to each other. This is equivalent to a conceptual splitting

f subspace S (5) (with 8 basis vectors) into smaller subspaces S (5 A ) 

nd S (5 B ) that each have 4 basis vectors. The required linear com-

inations are obtained by inspection as follows: 

Basis vectors for subspace S (5 A ) 

(5 A ) 
1 

= 	(5) 
1 

= v 1 − v 16 − v 17 + v 32 (16a)

(5 A ) 
2 

= 	(5) 
6 

= v 6 − v 11 − v 22 + v 27 (16b)

(5 A ) 
3 

= 	(5) 
2 

+ 	(5) 
5 

= v 2 + v 5 − v 12 − v 15 − v 18 − v 21 + v 28 + v 31 

(16c)

(5 A ) 
4 

= 	(5) 
3 

− 	(5) 
8 

= v 3 − v 8 + v 9 − v 14 − v 19 + v 24 − v 25 + v 30 

(16d)
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Fig. 12. Basis vectors of subspace S (5) of the 32-node double-layer cable net: (a) 	(5) 
1 

; (b) 	(5) 
2 

; (c) 	(5) 
3 

; (d) 	(5) 
4 

; (e) 	(5) 
5 

; (f) 	(5) 
6 

; (g) 	(5) 
7 

and (h) 	(5) 
8 

. 
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Basis vectors for subspace S (5 B ) 

(5 B ) 
1 

= 	(5) 
4 

= v 4 − v 13 − v 20 + v 29 (17a) 

(5 B ) 
2 

= 	(5) 
7 

= v 7 − v 10 − v 23 + v 26 (17b) 

(5 B ) 
3 

= 	(5) 
2 

− 	(5) 
5 

= v 2 − v 5 + v 12 − v 15 − v 18 + v 21 − v 28 + v 31 

(17c) 

(5 B ) 
4 

= 	(5) 
3 

+ 	(5) 
8 

= v 3 + v 8 − v 9 − v 14 − v 19 − v 24 + v 25 + v 30 

(17d) 

The orthogonality of the above new sets of vectors are evident

hen we compare the plots in Fig. 18 (basis vectors for subspace

 

(5 A ) ) versus those in Fig. 19 (basis vectors for subspace S (5 B ) ). In

hese plots, a solid diagonal line in the central panel of the ca-

le net denotes a symmetry plane of the vector pattern, while a

ashed line denotes an antisymmetry plane. We note that all four

ectors belonging to the same subspace have the same symme-

ry and antisymmetry planes. Furthermore, the symmetry and an-

isymmetry planes of the vectors of subspace S (5 A ) are perpendicu-

ar to their counterparts in subspace S (5 B ) , confirming the orthogo-

ality of the two sets of vectors. 

Similarly, we may split subspace S (10) (with 8 basis vectors) into

ndependent smaller subspaces S (10 A ) and S (10 B ) that each have 4

asis vectors, as follows: 

Basis vectors for subspace S (10 A ) 

(10 A ) 
1 

= 	(10) 
1 

= v 1 − v 16 + v 17 − v 32 (18a) 

(10 A ) 
2 

= 	(10) 
6 

= v 6 − v 11 + v 22 − v 27 (18b) 

(10 A ) 
3 

=	(10) 
2 

+	(10) 
5 

= v 2 + v 5 − v 12 − v 15 + v 18 + v 21 − v 28 − v 31 

(18c) 
(10 A ) 
4 

=	(10) 
3 

− 	(10) 
8 

= v 3 − v 8 + v 9 − v 14 + v 19 − v 24 + v 25 − v 30 

(18d) 

Basis vectors for subspace S (10 B ) 

(10 B ) 
1 

= 	(10) 
4 

= v 4 − v 13 + v 20 − v 29 (19a) 

(10 B ) 
2 

= 	(10) 
7 

= v 7 − v 10 + v 23 − v 26 (19b) 

(10 B ) 
3 

=	(10) 
2 

−	(10) 
5 

= v 2 − v 5 + v 12 − v 15 + v 18 − v 21 + v 28 − v 31 

(19c) 

(10 B ) 
4 

= 	(10) 
3 

+ 	(10) 
8 

= v 3 + v 8 − v 9 − v 14 + v 19 + v 24 − v 25 − v 30

(19d) 

The orthogonality of the two sets of basis vectors may be seen

y comparing the plots of Fig. 20 versus those of Fig. 21 . The sym-

etry and antisymmetry planes of the basis vectors of subspace

 

(10 A ) (shown in Fig. 20 ) are perpendicular to those of the basis

ectors of subspace S (10 B ) (shown in Fig. 21 ), confirming the or-

hogonality of the two sets. Vectors belonging to the same sub-

pace clearly have the same symmetry and antisymmetry planes. 

. Insights and computational benefits 

Through the group-theoretic procedure described in the previ-

us section, the original vector space of the problem, spanned by

2 basis vectors representing the vertical degrees of freedom at the

2 nodes of the double-layer cable net (16 nodes per layer), has

een decomposed into 12 independent subspaces each of much

maller dimension (i.e. number of basis vectors) as summarised in

able 3 . 

Table 3 shows that, instead of solving a 32-dimensional eigen-

alue problem (i.e. one with 32 degrees of freedom), the achieved

ecomposition requires the solution of 12 independent eigenvalue
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Table 3 

Dimensions of subspaces of 

the 32-node double-layer 

cable net. 

Subspace Dimension 

S (1) 3 

S (2) 1 

S (3) 1 

S (4) 3 

S (5 A ) 4 

S (5 B ) 4 

S (6) 1 

S (7) 3 

S (8) 3 

S (9) 1 

S (10 A ) 4 

S (10 B ) 4 

Full space 32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Basis vector of subspace S (6) of the 32-node double-layer cable net: 	(6) 
1 . 

Fig. 14. Basis vectors of subspace S (7) of the 32-node double-layer cable net: 

(a) 	(7) 
1 

; (b) 	(7) 
2 

and (c) 	(7) 
3 

. 

Fig. 15. Basis vectors of subspace S (8) of the 32-node double-layer cable net: 

(a) 	(8) 
1 

; (b) 	(8) 
2 

and (c) 	(8) 
3 

. 

Fig. 16. Basis vector of subspace S (9) of the 32-node double-layer cable net: 	(9) 
1 . 
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problems of much smaller dimensions, which represents a very

substantial reduction in computational effort. We will consider the

issue of computational effort in more detail very shortly. 

Let us revisit the subspace pairs { S (5 A ) ; S (5 B ) } and { S (10 A ) ; S (10 B ) }.

An examination of the vector plots in Figs 18 –21 reveals that the

sets of basis vectors for subspaces S (5 A ) and S (5 B ) are identical to

each other, except for their different orientations of symmetry and

antisymmetry planes. Similarly, the sets of basis vectors for sub-

spaces S (10 A ) and S (10 B ) are identical to each other, except for orien-

tation. The orientation of a set of basis vectors does not affect the

physical properties of the subspace, so we conclude that subspaces

S (5 A ) and S (5 B ) will yield identical sets of eigenvalues. Similarly, sub-

spaces S (10 A ) and S (10 B ) will yield identical sets of eigenvalues. 

Thus in conducting a vibration analysis, we do not need to

consider both subspaces S (5 A ) and S (5 B ) . Consideration of either of

these 4-dimensional subspaces will yield all the 8 natural frequen-

cies of subspace S (5) , which occur as four sets of repeated roots.

Similarly, consideration of either subspace S (10 A ) or subspace S (10 B ) 

will yield all the 8 natural frequencies of subspace S (10) , which also

occur as four sets of repeated roots. The linear combinations of

equation sets (16, 17) and (18, 19) provide a direct way of obtaining

repeated eigenvalues of the 8-dimensional subspaces S (5) and S (10) 

without tackling the full eigenvalue problem of these subspaces. 

In eigenvalue problems of the vibration of structural systems

with discrete parameters and a finite number of degrees of free-

dom, the computational effort associated with extracting all the

natural frequencies of the system is very much a function of the

total number of degrees of freedom n of the system, and may gen-

erally be considered as roughly proportional to n 3 , the exact rela-

tionship depending, of course, on the computational method used.

By decomposing the original vector space of the problem (spanned

by n basis vectors corresponding to the n degrees of freedom of

the system) into r independent subspaces of dimensions { n 1 , n 2 , ...,

n r }, where 

n 1 + n 2 + ... + n r = n (20)

we achieve a reduction in computational effort which we may rep-

resent as a ratio R ce as follows: 

R ce = 

n 

3 
1 + n 

3 
2 + · · · + n 

3 
r 

n 

3 
≤ 1 . 0 (21)

For the decomposition in Table 3 , we get 

R ce = 

1 

32 

3 

(
3 

3 + 1 

3 + 1 

3 + 3 

3 + 4 

3 + 0+ 1 

3 + 3 

3 + 3 

3 + 1 

3 + 4 

3 + 0 

)

= 

240 

32768 

= 0 . 0073 (22)

the zero terms signifying that computations for subspaces S (5 B ) and

S (10 B ) are not required once the results for subspaces S (5 A ) and
 

(10 A ) have been computed. Thus our group-theoretic decomposi-

ion reduces the computational effort to a mere 0.73% of the com-

utational effort associated with the full problem of the 32 degree-

f-freedom double-layer cable net. 

Apart from these very substantial computational gains, some

mportant insights on the vibration behaviour of the double-layer

able net can also be gained prior to any eigenvalue calculations.

irst and foremost, the patterns of vibration are not haphazard, but

onform to specific symmetry types associated with the symmetry

roup D 4 h . For the example that has been considered, the modes

f vibration will have patterns that are similar to the plots of ba-

is vectors shown in Figs 8 –11 , 13 –16 and 18 –21 . For the top-layer

odes, and at any given time, the vectors pointing towards the cen-

re of symmetry of the plots denote downward motion, while the
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Fig. 17. Basis vectors of subspace S (10) of the 32-node double-layer cable net: (a) 	(10) 
1 

; (b) 	(10) 
2 

; (c) 	(10) 
3 

; (d) 	(10) 
4 

; (e) 	(10) 
5 

; (f) 	(10) 
6 

; (g) 	(10) 
7 

and (h) 	(10) 
8 

. 

Fig. 18. Basis vectors of subspace S (5 A ) of the 32-node double-layer cable net: (a) 	(5 A ) 
1 

; (b) 	(5 A ) 
2 

; (c) 	(5 A ) 
3 

and (d) 	(5 A ) 
4 

. 

Fig. 19. Basis vectors of subspace S (5 B ) of the 32-node double-layer cable net: (a) 	(5 B ) 
1 

; (b) 	(5 B ) 
2 

; (c) 	(5 B ) 
3 

and (d) 	(5 B ) 
4 

. 
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ectors pointing away from the centre of symmetry of the plots

enote upward motion, and vice-versa for the bottom-layer nodes. 

Secondly, and equally important, the foregoing group-theoretic

nalysis informs us, before any calculations for natural frequen-

ies and mode shapes are actually performed, on how many mode

hapes there will be of a given symmetry type. For example, of

he 32 vibration modes of our example, 3 modes will belong to

ubspace S (1) having the full symmetry of a square prism. In these

odes, the corner nodes {1, 4, 13, 16, 17, 20, 29, 32} will all

ove simultaneously outwards or inwards (with respect to the
entral xy plane of symmetry) with the same amplitude A 1 , the

id-side nodes {2, 3, 5, 8, 9, 12, 14, 15, 18, 19, 21, 24, 25,

28, 30, 31} will all move simultaneously outwards or inwards

ith the same amplitude A 2 , and the centre nodes {6, 7, 10, 11,

22, 23, 26, 27} will all move simultaneously outwards or inwards

ith the same amplitude A 3 , bearing in mind that all nodes of a

iven set carry equal masses ( m 1 , m 2 or m 3 ) and are connected by

qual stiffnesses ( k 1 , k 2 or k 3 ). Thus in this subspace, there will

e three distinct patterns of motion, all with full D 4 h symmetry.

hese three modes are an example of the transverse extensional
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Fig. 20. Basis vectors of subspace S (10 A ) of the 32-node double-layer cable net: (a) 	(10 A ) 
1 

; (b) 	(10 A ) 
2 

; (c) 	(10 A ) 
3 

and (d) 	(10 A ) 
4 

. 

Fig. 21. Basis vectors of subspace S (10 B ) of the 32-node double-layer cable net: (a) 	(10 B ) 
1 

; (b) 	(10 B ) 
2 

; (c) 	(10 B ) 
3 

and (d) 	(10 B ) 
4 

. 
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(or “breathing”) modes that were mentioned in Section 1 , which

are characterised by expansion and contraction of the vertical dis-

tance between the two layers. 

Thirdly, the group-theoretic analysis reveals the existence of

pairs of modes that have identical shapes (except for orientation of

symmetry and anti-symmetry planes) and identical values of nat-

ural frequencies. As already pointed out in the previous section,

there are four such pairs in each of subspaces S (5) and S (10) . A nu-

merical analysis would not be able to distinguish these. 

Finally, with this insight on the symmetry types of the modes

associated with each of the subspaces of the double-layer cable

net, if we were only interested in the natural frequencies of modes

having a particular shape, we would only need to focus attention

on the associated subspace, and solve for the eigenvalues of that

subspace only, instead of having to tackle the full problem first,

and then pick out the required modes at the end. In this regard,

it must be noted that the eigenvalues yielded by the independent

subspaces are, in fact, the required eigenvalues of the full problem.

Evidently, the 32-node double-layer cable net could have been

studied on the basis of symmetry group D 2 h , which is a sub-group

of D 4 h , and describes the symmetry of a rectangular prism. The

idempotents of group D 2 h were given as Eqs. (2) . Applying idem-

potent P (1) of symmetry group D 2 h (as given by Eq. (2a) ) to each of

the 32 nodal freedoms of the cable net yields only four indepen-

dent basis vectors for subspace S (1) , which may be taken as 

	(1) 
1 

= v 1 + v 16 + v 29 + v 20 + v 32 + v 17 + v 13 + v 4 (23a)

	(1) 
2 

= v 2 + v 15 + v 30 + v 19 + v 31 + v 18 + v 14 + v 3 (23b)

	(1) 
3 

= v 5 + v 12 + v 25 + v 24 + v 28 + v 21 + v 9 + v 8 (23c)

	(1) 
4 

= v 6 + v 11 + v 26 + v 23 + v 27 + v 22 + v 10 + v 7 (23d)

Similarly, applying idempotents P (2) − P (8) of symmetry group

D 2 h (as given by Eqs. (2b) –( 2h )) to the nodal freedoms of the ca-

ble net yields four independent basis vectors for each of subspaces
 

(2) − S (8) . Thus symmetry group D 2 h decomposes the same prob-

em into 8 subspaces each of dimension 4. For this group, the re-

uction factor for computational effort is 

 ce = 

1 

32 

3 

(
4 

3 + 4 

3 + 4 

3 + 4 

3 + 4 

3 + 4 

3 + 4 

3 + 4 

3 
)

= 

512 

32768 

= 0 . 0156 (24)

i.e. 1.56%). This is not as efficient as the D 4 h decomposition, since

ot all symmetries of the cable net are utilised, and modes of the

ame natural frequency (i.e. doubly repeating roots) are not au-

omatically identified. Nevertheless, the advantage of group D 2 h 

ver D 4 h is that computational effort is evenly spread over the 8

ubspaces (all are of dimension 4), unlike the D 4 h decomposition

here the dimensions of the subspaces vary from 1 to 4. For large-

cale problems where it might be desired to make use of paral-

el processors to speed up computations, considerations of distri-

ution of computational effort over the various subspaces become

ore important. 

. Concluding remarks 

Coupling high-tension cable nets into double-layer configura-

ions offers the opportunity for modifying the vibration character-

stics of single-layer cable nets in a beneficial way, when members

f appropriate damping and stiffness properties are employed as

oupling devices. This investigation has focussed on double-layer

able nets of D 4 h symmetry, and has employed group theory to

ain some important insights on the vibration characteristics of

uch configurations. These insights have included the type of sym-

etries which the vibration modes are going to have, the number

f modes that will exhibit a given type of symmetry, the existence

f pairs of modes of the same natural frequency, and the nature of

he symmetry associated with such paired modes. 

By examining the dimensions of the various subspaces into

hich the original vector space of the problem decomposes, it has

een possible to obtain an estimate of the reduction in computa-

ional effort afforded through use of group theory. Although the
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tudy was conducted on the basis of a double-layer cable net with

 particular number of nodes (i.e. 32), we may extrapolate the con-

lusions to much larger cable nets, as the pattern of vector-space

ecomposition remains the same. A large D 4 h double-layer cable

et might have, for example, 200 cables running in each of the x

nd y directions, giving 40, 0 0 0 nodes per layer, or 80, 0 0 0 degrees

f freedom in total. 

For double-layer cable nets of the type considered in this study,

se of the symmetry group D 4 h reduces the computational effort

nvolved in calculating natural frequencies and mode shapes to

nly 0.7% of that associated with the conventional approach. On

he other hand, use of the sub-group D 2 h , which is of half the

rder, also results in a substantial but smaller reduction of com-

utational effort (of the order of 1.6% of that associated with the

onventional approach), and does not offer as many insights into

ibration behaviour as symmetry group D 4 h . However, the simpler

 2 h group results in a more uniform decomposition of the origi-

al space of the problem, an important consideration in large-scale

roblems where parallel processors may need to be used. 

The considerations of this paper are relevant to the study of the

ibration behaviour of cable-net systems of the type used for roof-

ng applications. It is very important for engineers to understand

he vibration characteristics of slender structures such as long-

pan cable-net roofs, in order to avoid wind-induced resonance

nd other adverse effects. If excessive vibrations are envisaged,

hen it may be necessary to install suitable damping devices; a

ull understanding of the behaviour of the undamped system is the

rst step in the design of an effective damping system. While the

ibration properties of a cable net can be quantified from a con-

entional analysis, use of group-theory allows important features

f the behaviour to be predicted before detailed calculations are

erformed. Unlike single-layer cable nets and layered space grids,

ouble-layer cable nets with soft (i.e. spring-like) transverse cou-

ling feature transverse-stretching modes of vibration, and group

heory is particularly effective in studying these. This paper has re-

ealed the symmetry types of such modes. 

In a follow-up study, with the calculation of natural frequen-

ies and mode shapes in mind, we will formulate the eigenvalue

roblem of the double-layer cable net on the basis of group-theory,

olve this in terms of the cable forces and coupling stiffnesses, and

valuate the influence of coupling stiffnesses on the vibration char-

cteristics of layered cable nets. Use of group theory in the calcu-

ation stages results in decomposition of the eigenvalue problem

nto a series of independent smaller problems, with consequent re-

uctions in the computational effort involved in the determination

f natural frequencies and mode shapes. The symmetry of double-

ayer cable nets of the present type is of higher order than that of

he constituent single-layer cable nets, so the computational gains

ill be considerably higher. 
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