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The exact differential equations for the axisymmetric bending of elliptic toroidal shells are difficult to
solve. In this paper, and by considering a semi-elliptic toroid, we present an approximate bending so-
lution that is valid in regions adjacent to the horizontal equatorial plane. The formulation accurately
simulates edge effects which may arise from loading and geometric discontinuities located in the
equatorial plane of elliptic toroids. In particular, the developed closed-form results provide a very ef-
fective means for evaluating the state of stress in the relatively narrow zones experiencing mid-side local
effects in complete elliptic toroidal vessels subjected to hydrostatic loading, and for calculating the de-
formed shape of the shell midsurface.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The membrane theory of shells is a greatly simplified yet very
effective basis for estimating stresses and deformations in those
regions of the shell over which the loading and geometry do not
change too rapidly. However, and as is well-known, the theory
becomes inadequate at or in the vicinity of supports, concentrated
loadings, shell junctions or discontinuities in shell geometry
(thickness, slope, radii of curvature), loading and material prop-
erties. Novozhilov [1] has called these locations “lines of distor-
tion” in reference to the existence of a bending effect locally dis-
turbing the membrane state of stress in these regions. Dis-
continuity problems in shells of revolution have been the subject
of many investigations, and a good body of closed-form results
exists for the more common types of shells and loading conditions
[2–5].

The performance of containment shells is usually assessed with
regard to their stress and deformation response in the linear
elastic range [2,3], their vibration characteristics and dynamic re-
sponse, as well as their nonlinear buckling and postbuckling be-
haviour within the elastic and plastic ranges of material behaviour.
Metal shells are particularly susceptible to buckling on account of
their thin-ness (radius-to-thickness ratios typically in excess of
500). Numerical studies have been carried out on the buckling
capacity of vertical cylindrical steel tanks [6–11], horizontal
oni).
cylindrical and near-cylindrical vessels [12–14] and conical tanks
[15–17]. The buckling capacity of multi-segmented shells under
external water pressurisation has also been investigated [18], as
has the elastic buckling of certain unusual mathematical forms for
shells [19,20].

Junction stresses in various shell assemblies and multi-seg-
mented vessels have been the subject of intensive studies over the
past 15 years [21–25]. Mechanics phenomena around shell inter-
sections and at shell-branching locations have also been of interest
[26,27]. The presence of ring beams at shell junctions has a con-
siderable influence on the behaviour of the shell; some efforts
have also been directed towards understanding ring–shell inter-
actions [28,29]. A more comprehensive review of recent studies on
the statics, dynamics and stability of various types of liquid-con-
tainment shells under a variety of loading conditions may be seen
in a recent survey [30].

Toroidal shells have mostly been studied with pressure-vessel
applications in mind, though liquid-containment applications have
also been of interest. The classical solutions for pressurised circular
and elliptical toroids may be seen in texts on linear shell analysis
[2–5]. Even where toroidal shells with uniform geometry are
subjected to internal pressure only, the membrane solution be-
comes inadequate in the vicinity of the horizontal circles furthest
from the equatorial plane, owing to the vanishing of the curvature
in one of the principal planes [31].

Sutcliffe [32] tackled the stress analysis of both circular and
elliptical toroidal shells subjected to internal pressure. While ac-
curate for the purpose, the formulation is somewhat cumbersome
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for practical implementation. Galletly [33] considered the elastic
buckling of an elliptic toroidal shell subjected to uniform internal
pressure, and confirmed that internally pressurised elliptical tor-
oids, unlike circular toroids, may possibly buckle, depending on
the axes ratio of the elliptical cross-section. The study was also
extended to plastic buckling [34], for which the post-buckling
behaviour of the shell was noted to be stable.

Redekop [35] studied the buckling behaviour of an orthotropic
toroidal shell of elliptical cross-section, while Yamada et al. [36]
considered the free vibration response of a toroidal shell of elliptic
section. Xu and Redekop [37] also considered the free vibration of
elliptic toroidal shells, but with orthotropic properties. Zhan and
Redekop [38] studied toroidal tanks with cross-sections made up
of combinations of circular arcs of different radii (ovaloid shape),
and observed the vibration, buckling and collapse behaviour of
this type of toroidal vessel.

In this paper, we will focus attention on the thin elliptic tor-
oidal shell. Noting the lack of a convenient analytical solution for
the axisymmetric bending of an elliptic toroidal shell, we aim at
developing a practical means for estimating bending-disturbance
effects that may arise in the mid-side locations (herein referred to
as “equatorial” locations) of vertically elongated thin elliptic tor-
oids, where the vertical semi-axis b of the ellipse is greater than
the horizontal semi-axis a. Specifically, we aim to develop and
present a set of closed-form expressions for interior shell stresses
due to axisymmetric bending moments and shearing forces ap-
plied in the equatorial plane of the elliptic section as uniformly
distributed edge actions.

The formulation is intended for use in quantifying (i) the
junction effects in the vicinity of the equatorial plane of subsea
elliptic–toroidal shell structures (where a horizontal plate deck
may be attached to the inner walls of the toroid to provide an
interior working platform extending right round the torus), or (ii)
the edge effects in the vicinity of supports where the elliptic tor-
oidal vessel is used as an elevated circular tank supported on
closely-spaced vertical columns attached at both the intrados and
extrados of the torus. The relatively weak edge effects associated
with partial filling of the tank may also be quantified on the basis
of this solution. We will begin by defining the geometry of the
elliptic toroid.
2. Geometrical preliminaries

Fig. 1 shows the relevant geometrical parameters of an elliptic
toroidal shell. To generate the torus, an ellipse of semi-axes a
(horizontal) and b (vertical) is rotated about a vertical axis Y Y−
that lies at a distance A ( a> ) from the local vertical axis y y− of
the ellipse. The equatorial plane (horizontal plane of symmetry) is
P
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Fig. 1. Geometrical parameters of an elliptic toroidal shell.
denoted by E E− . In what follows, we will take the generator
curve (or meridian) of the toroidal shell as the ellipse to the left of
the axis Y Y− . Let P be any point on the generator meridian. The
radius of curvature of the ellipse at point P is denoted by r1 and the
corresponding centre of curvature by O1. For the three-dimen-
sional toroidal surface, there would be two principal radii of cur-
vature (being the maximum and minimum values of curvature) at
any given point P , and these occur in planes perpendicular to each
other. The first principal radius of curvature of the toroidal surface
at point P is the radius of curvature r PO1 1(= ) of the generator
ellipse at that point, while the second principal radius of curvature
at point P , denoted by r2, is equal to the distance PO2, where O2 is
the point at which the surface normal at P intersects the axis of
revolution Y Y− of the torus.

Point P itself may be defined by an angular coordinate ϕ, which
is the angle measured from the upward direction of the axis of
revolution of the torus to the surface normal at point P . The range
0 2ϕ π≤ ≤ covers all points on the toroidal surface, with 0 ϕ π≤ ≤
describing points in the outer region of the torus, and 2π ϕ π≤ ≤
describing points in the inner region of the torus; the coordinates

/2ϕ π= and 3 /2ϕ π= define points on the equatorial plane, which
of course correspond to the extrados and intrados of the torus
with respect to the axis Y Y− .

For the outer region of the torus 0 ϕ π( ≤ ≤ ), the principal radii
of curvature are given by [3]
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while for the inner region 2π ϕ π( ≤ ≤ ), these become
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The values of r1 and r2 at the extrados of the torus ( /2ϕ π= ) and
the intrados ( 3 /2ϕ π= ), which correspond to the outer and inner
sides of the elliptical section, will be required in due course.
Evaluating these, we obtain

r
b
a 3a1

2
= ( )
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at the extrados, and

r
b
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2
= − ( )

r A a 4b2 = − ( )

at the intrados.
3. Governing equation

Fig. 2 shows a bending element of an axisymmetrically-loaded
shell of revolution in the ,ϕ θ{ } coordinate system. Here, the
meridional angle ϕ identifies the position of a point along a given
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Fig. 2. Element of a shell of revolution under axisymmetric bending.
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meridian of the shell (as already defined), while the coordinate θ is
the circumferential angle measured from an arbitrary vertical
plane to the vertical plane containing the meridian in question, the
two vertical planes intersecting at the axis of revolution of the
shell. The element is in equilibrium under the loads acting over its
surface (external loading on the shell) and the forces and moments
acting along its four edges (internal actions in the shell), but in the
figure, the surface loading is not shown, since we will only be
concerned with edge effects.

The actions N N,{ }ϕ θ are direct forces per unit length of the
edge, acting in the direction of the tangent to the shell meridian at
any given point (henceforth called the meridional direction), and
the direction of the tangent to the horizontal circumferential circle
passing through that point (henceforth called the hoop direction),
respectively. The actions M M,{ }ϕ θ are bending moments per unit
length of the edge, as seen in the vertical meridional section and
the horizontal hoop section respectively. The action Q ϕ is a shear
force per unit length of the edge, acting in the meridional section;
there is no shear force in the horizontal section Q 0( = )θ , owing to
axisymmetry. All meridional actions are shown incremented in the
direction of increasing ϕ, but the hoop actions do not change with
respect to θ owing to axisymmetry.

Considering equilibrium of the shell element, and making use
of strain–displacement relations as well as Hooke’s law, we may
express Nϕ, Nθ , Mϕ and Mθ in terms of displacements, and then
reduce the ensuing relationships to the well-known Reissner–
Meissner differential equations for the axisymmetric bending of
general shells of revolution [2,3]
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In these equations, the variable V is the angular rotation of the
shell meridian as seen in the meridional section, while Q ϕ is the
shear force as already defined. The material properties E (Young's
modulus of elasticity) and ν (Poisson's ratio) are assumed to be
constant. The parameter t denotes shell thickness, while D is the
flexural rigidity of the shell, given by
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For thin shells of revolution which are not shallow (non-shal-
low shells shall be taken as those in which bending phenomena
occur in locations for which ϕ is at least /6π from the locations

0ϕ = and ϕ π= ), second-derivative terms of V and Q ϕ are much
bigger than first-derivative and zero-derivative terms. As an ap-
proximation, we may therefore drop all first-derivative and zero-
derivative terms on the left-hand sides of Eqs. (5), so that the
equations become
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In the present problem of the prolate (vertically-elongated)
elliptical cross-section b a( > ), this approximation is particularly
justified, since we intend to investigate bending phenomena in
regions that are adjacent to the equatorial plane ( /2ϕ π= ± ),
where the sides of the elliptical section remain fairly steep for a
considerable distance on either side of the equatorial plane.

Combining Eqs. (7a) and (7b), we obtain the fourth-order dif-
ferential equation
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where λ is a slenderness parameter defined as follows:
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For the elliptical toroidal shell, the principal radii of curvature r1
and r2 are functions of ϕ (as given by Eqs. (1) and (2)), so the
slenderness parameter λ is also a function of ϕ, implying that the
second term of the above fourth-order differential equation has a
variable coefficient. Given the complexity of this coefficient, the
exact solution of Eq. (8) is rather difficult to obtain.
4. Approximate general solution

Now for a prolate elliptical profile, the radii of curvature r1 and
r2 vary rather slowly in the neighbourhoods of the equatorial



Fig. 3. Bending and shearing edge actions on a semi-elliptic toroidal shell.
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plane, which are the regions of present interest. Based on this
observation, we will introduce the further approximation that r1
and r2 are practically constant in the narrow zones adjacent to the
equatorial plane and within which bending disturbances are
confined. These constant values of r1 and r2 will be taken as the
values at the location /2ϕ π= (for the outer part of the toroidal
shell) and the location 3 /2ϕ π= (for the inner part of the toroidal
shell), as already given by Eqs. (3) and (4).

With this simplification, the slenderness parameter λ in Eq. (9)
is now a constant, and the fourth-order differential equation (Eq.
(8)) now has constant coefficients. This allows us to take the
general solution of Eq. (8) in the well-known form [3]

Q e C C e C Ccos sin cos sin 101 2 3 4( ) ( )λϕ λϕ λϕ λϕ= + + + ( )ϕ
λϕ λϕ−

where C1, C2, C3 and C4 are constants of integration to be evaluated
from the boundary conditions of the shell. Based on the well-
known behaviour of spherical and cylindrical shells, let us tenta-
tively assume that for the semi-elliptical toroidal shell, the bend-
ing disturbance emanating from either the outer edge or the inner
edge is of a decaying character. Furthermore, let us assume that
any adjacent edges of the shell are sufficiently far apart to allow
decoupling of edge effects. This permits us to retain only two of
the constants appearing in Eq. (10), and to rewrite the solution as

Q Ce sin 11λψ β= ( + ) ( )ϕ
λψ−

where ψ is now the meridional angle measured from the normal
at the edge of the shell to the normal at the point in question; C
and β are new constants of integration. For the shell edge located
in the equatorial plane, the relationship between ϕ and ψ is simply
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where the first equation refers to the outer edge of the semi-el-
liptic toroidal shell, and the second refers to the inner edge (closer
to the axis of revolution).

Equilibrium considerations of the shell element yield
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since cot 0ϕ ≈ in the vicinity of the toroidal shell edges
( /2; 3 /2ϕ π π= ). For the hoop stress resultant, we obtain,
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ignoring the second term in Q ϕ in relation to the first term in the
first derivative of Q ϕ, particularly as the rate of variation of r2 with
respect to ϕ is also very small in the neighbourhood of the
equatorial plane.

In evaluating the edge effects, compatibility conditions invol-
ving the horizontal displacement δ of the shell edge (which is a
movement perpendicular to the axis of revolution of the torus),
and the meridional rotation V of the shell edge, will be required.
From Eq. (7b), we may write V as follows:

⎛
⎝⎜

⎞
⎠⎟V

Et
r

r

d Q

d
1

15
2
2

1
2

2

2ϕ
=

( )
ϕ

From strain–displacement and stress–strain considerations, the
horizontal displacement δ may be expressed in terms of the stress
resultants Nϕ and Nθ as follows:

Et
r N N

Et
r N

1
sin

1
sin 162 2( )( ) ( )δ ϕ ν ϕ= − ≈ ( )θ ϕ θ

since N 0≈ϕ . Using result (14) to eliminate Nθ , we obtain
⎛
⎝⎜

⎞
⎠⎟Et

r
r
r

dQ
d

1
sin

17
2

2

1
( )δ ϕ

ϕ
≈ −

( )
ϕ

Using curvature–rotation relations and Hooke's law, the bend-
ing moment Mϕ may be expressed in terms of the rotation V as
follows:
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neglecting the second term (in V ) in relation to the first term (in
the first derivative of V ), particularly as the second term also
contains the factor cot ϕ ( 0≈ in the neighbourhood of the equa-
torial plane). Making use of Eq. (15) to eliminate V , and using the
approximation that, for the prolate elliptical profile, r2 and r1 are
practically constant in the narrow zone experiencing edge effects,
we obtain
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At this stage, we may now make use of the general solution for

Q ϕ (Eq. (11)) to eliminate Q ϕ from the above relationships. The
results are as follows:
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5. Boundary conditions and generalised edge effects

Fig. 3 shows the edges of the semi-elliptical toroidal shell
subjected to uniformly distributed bending moments and hor-
izontal shearing forces, where M H,e e1 1{ } are the axisymmetric
actions applied at the outer edge, and M H,e e2 2{ } are the ax-
isymmetric actions applied at the inner edge. The following
treatment applies equally to the two edges. In the formulation, we
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will therefore denote the applied edge bending moments and edge
shearing forces simply by Me and He, with ψ denoting the mer-
idional angle from the edge in question (outer or inner).

When Me only is applied at a given edge (in the absence of He),
we want to choose the constants C and β such that the following
boundary conditions are satisfied:

M M 27ae0( ) = ( )ϕ ψ=

Q 0 27b0( ) = ( )ϕ ψ=

Applying these conditions to Eqs. (11) and (23), we obtain
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Substituting these values of β and C into Eqs. (21)–(26), we
obtain the interior stress resultants, bending moments and de-
formations due to the edge bending moment Me as follows:
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At the edge 0ψ( = ), we have
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When He only is applied at a given edge (in the absence of Me), we
want to choose the constants C and β such that the following
boundary conditions are satisfied:

M 0 37a0( ) = ( )ϕ ψ=

Q H 37be0( ) = ( )ϕ ψ=

Applying these conditions to Eqs. (11) and (23), we obtain

4 38aβ π= − ( )

C H2 38be= − ( )

Substitution of these values of β and C into Eqs. (21)–(26) gives
the interior stress resultants, bending moments and deformations
due to the edge shear He as follows:
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6. Shell stresses due to edge actions

The bending-related shell stresses σϕ (in the meridional direc-
tion) and σθ (in the hoop direction) are obtained by combining the
direct stresses due to the stress resultants Nϕ and Nθ (which are
constant across the shell thickness) with the flexural stresses due
to the bending moments Mϕ and Mθ (which vary linearly across the
shell thickness from a positive value on one side of the shell
midsurface to a negative value of the same magnitude on the
opposite side of the shell midsurface). Thus,
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where the first equation makes use of the fact that N 0≈ϕ (Eqs.
(29) and (39)) and the second equation makes use of the relation-
ship M Mν≈θ ϕ (Eqs. (32) and (42)). In the notation ± , the upper
sign refers to the inner surface of the shell (with respect to the
global axis of revolution of the torus), while the lower sign refers
to the outer surface.

For the stresses due to the edge bending moment Me, we
substitute the results for Mϕ and Nθ (as given by Eqs. (30) and (31))
into the above expressions, and then eliminate the parameters D
and λ using Eqs. (6) and (9) respectively, leading to the results:
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For the stresses due to the edge shearing force He, we substitute
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the results for Mϕ and Nθ (as given by Eqs. (40) and (41)) into
relations (47), and then eliminate the parameters D and λ using
Eqs. (6) and (9) respectively, leading to the results
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7. Analytical observations

7.1. Effect of Me

The magnitudes of the stresses due to Me (both meridional and
hoop) are not dependant on the principal radii r1 and r2 (and hence
the parameters a and b) of the elliptic torus. For a given applied
Me, the magnitudes of the induced shell stresses only depend on
the thickness t of the shell. This total lack of dependence on the
elliptic parameters a and b is a surprising result.

It means that for the same moment Me applied at the inner and
outer edges of the semi-elliptic toroidal shell, the peak values of
the induced shell stresses will be the same. However, the rate of
decay of the stresses with distance from the respective shell edge,
as well as the wavelength of the oscillations of the variation, will
not be the same, because the value of the shell slenderness
parameter λ (which governs both the rate of decay and the wa-
velength of the oscillations) at the outer edge differs from that at
the inner edge – see Eq. (9).
7.2. Effect of He

The magnitudes of the stresses due to He (both meridional and
hoop) not only depend on the shell thickness t , but more sig-
nificantly, are directly proportional to r2 . Now r A a2 = + for the
outer edge of the semi-elliptic toroidal shell, and r A a2 = − for the
inner edge (see Eqs. (3b) and (4b)). It therefore follows that, for the
same horizontal shear force He applied at the inner and outer
edges of the semi-elliptic toroidal shell, the peak values of the
induced shell stresses on the outer side of the torus will differ
from those on the inner side, since the r2 values differ; the outer
side will experience larger stresses than the inner side.

We also observe that only the parameters A and a of the elliptic
toroid (but not b) have an influence on the peak values of the
stresses due to He. The rate of decay of stresses with distance from
the shell edge, as well as the wavelength of the oscillations, will
also be different between the outer and inner sides, owing to the
different values of λ.

For He, we may write the stresses for the outer and inner edges
more explicitly as follows:
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7.3. Comparisons with cylindrical and spherical shell solutions

Not surprisingly, the derived theoretical results for the elliptic
toroidal shell are quite similar to those for the bending of a circular
cylindrical shell, and for the bending of a non-shallow spherical
shell when use is made of the Geckeler approximation [2,3]. Both
of these problems also result in a fourth-order governing differ-
ential equation of the same form as Eq. (8), with a general solution
of the same form as Eq. (10) or Eq. (11).

Looking at the expressions for Nθ , V , δ and Mϕ (Eqs. (14), (15),
(17) and (18) respectively), and replacing r d1 ϕ (for the curved
meridian) by dx (for the cylindrical shell), one can transform the
results for the elliptic–toroidal shell to those for a cylindrical shell.
However, the cylindrical-shell model will not exactly replicate the
behaviour of the toroid, since dx (parallel to the axis of revolution)
is only an approximation for the real r d1 ϕ, an approximation that
is very good in the neighbourhood of /2ϕ π= ± (errors are of the
order of /62ψ , where ψ is the angle from the edge), and that be-
comes better as r1 becomes larger, and exact as r1 approaches in-
finity. When r1 reaches infinity, the r2 for the toroidal shell becomes
the radius of the cylinder. If one wanted to use the cylinder so-
lution to approximate the behaviour of the elliptic toroidal shell in
the equatorial zones, the equivalent cylindrical shells for the outer
and inner edges of the semi-elliptic toroid are the two cylinders
which are tangential to the elliptic toroid at the extrados
(r A a2 = + ) and the intrados (r A a2 = − ).

Alternatively, one may replace the elliptic toroidal shell with
the equivalent spherical shell in the vicinity of the equatorial
plane, and then use the Geckeler approximation. The equivalent
spherical shells for the outer and inner edges of the semi-elliptic
toroid are the two spheres which are tangential to the elliptic
torus at the extrados and the intrados; these spheres are of radii
A a+ and A a− respectively.

For the outer edge of the elliptic toroid, the spherical-shell
solution is a better approximation of the stress distribution in the
elliptic toroid than the cylindrical-shell solution (the spherical
surface and the elliptic–toroidal surface have the same value of r1
at their tangent circle), but for the inner edge of the elliptic toroid,
the cylindrical-shell approximation is better than the spherical-
shell solution, owing to the inability of the sphere to model the
meridional curvature of the elliptic torus on its inner side (the
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spherical surface and the elliptic–toroidal surface have different
magnitudes of r1 at their tangent circle, and the signs of the cur-
vature are also different).
Fig. 5. Application of Me2 at the inner edge: (a) analytical results; (b) FEM results.
8. Numerical results

As an example, consider a semi-elliptical toroidal shell with the
parameters

a 10 m= ; b 20 m= ; A 30 m= ; t 0.05 m= ; E 200 10 N/m9 2= × ;
0.3ν =
These parameters are possible proportions for a subsea marine

observatory of circular plan shape, where the overall structural
diameter is 80 m and the height is 40 m. The principal radii of
curvature and shell slenderness parameters at the two edges fol-
low from Eqs. (3), (4) and (9):

Outer edge: r 40 m1 = ; r 40 m2 = ; 36.3568λ =
Inner edge: r 40 m1 = − ; r 20 m2 = ; 51.4163λ =
A bending moment M 100 kNm/me = is first applied at both the

outer shell edge and the inner shell edge. The variations of mer-
idional and hoop stresses with the angular coordinate ψ from the
shell edge are given by Eqs. (48), which apply for both the outer
edge and the inner edge, but using the λ value applicable for the
edge in question. The arc length s (in metres) from the shell edge
is simply given by s r 401 ψ ψ= = , where angle ψ is in radians.
Based on the theoretical formulation that has been developed in
this paper, Fig. 4(a) shows plots of meridional and hoop stresses
versus distance s from the outer edge, while Fig. 5(a) shows plots
of meridional and hoop stresses versus distance s from the inner
edge.

As a means for validating the theoretical results, a finite-ele-
ment modelling of the semi-elliptic toroidal shell using the FEM
programme ABAQUS [39] was performed, for an edge loading of
Fig. 4. Application of Me1 at the outer edge: (a) analytical results; (b) FEM results.
100 kNm/m. Two-node axisymmetric shell elements were em-
ployed throughout, with the element lengths kept at 0.05 m (very
fine mesh) throughout in order to ensure accurate modelling of
the rapidly varying bending-disturbance stresses in the edge
zones. The FEM results are shown in Fig. 4(b) for the outer edge
and Fig. 5(b) for the inner edge.

For the same shell, a horizontal shear force H 100 kN/me = is
next applied at both the outer shell edge and the inner shell edge.
The variations of meridional and hoop stresses with the angular
coordinate ψ from the shell edge are given by Eq. (50) for the outer
edge and Eq. (51) for the inner edge. Based on the theoretical
formulation that has been developed in this paper, Fig. 6(a) shows
plots of meridional and hoop stresses versus distance s from the
outer edge, while Fig. 7(a) shows plots of meridional and hoop
stresses versus distance s from the inner edge. The corresponding
FEM results are shown in Figs. 6(b) and 7(b).

Comparing the analytical results versus their FEM counterparts,
it is noted that the agreement is excellent throughout. The curves
are practically identical. The discrepancy is generally less than 1%
for both the outer edge of the semi-elliptic toroid and the inner
edge, and for both the application of Me and the application of He.
This is clearer from Table 1, where peak values of the analytical
plots are compared with peak values of the FEM plots; theoretical
values and FEM values are almost identical. Owing to the fineness
of the FEM mesh that was adopted (further refinement of the
mesh did not change the results by more than 0.1%), the FEM re-
sults may be taken as exact for practical purposes. The achieved
agreement of over 99% between the analytical and FEM results
leads us to conclude that the proposed theoretical formulation for
the equatorial bending of prolate elliptic toroidal shells, while
approximate, is a very accurate and effective means for quantifying
edge effects in regions bordering the extrados and intrados of such
shells. This is a finding of significant practical importance.



Fig. 6. Application of He1 at the outer edge: (a) analytical results; (b) FEM results.

Fig. 7. Application of He2 at the inner edge: (a) analytical results; (b) FEM results.
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Comparing the two edges of the semi-elliptical toroid, and
consistent with the analytical predictions, it is seen that the effects
of He are larger on the outer side of the toroid (owing to the larger
value of r2 there). It is also observed that the bending disturbance
decays more quickly on the inner side of the toroid (owing to the
larger value of λ there).
9. Concluding remarks

The exact differential equations for the axisymmetric bending
of elliptic toroidal shells are complex and difficult to solve analy-
tically, since the coefficients of these equations are themselves
complicated functions of the independent variable ϕ. For the es-
timation of bending effects in the mid-level regions of the prolate
elliptical toroid ( b a> ), a simplication of the Reissner–Meissner
equations has been proposed in this paper. This takes advantage of
(i) the rapidly decaying character of edge effects, (ii) the slow rate
of change of r1 and r2 (principal radii of curvature of the shell) in
these regions of the toroid, and (iii) the fact that cot 0ϕ ≈ in the
vicinity of the equatorial plane.

The relevant formulation for this approach has been developed,
and closed-form expressions derived for shell stresses in the edge
zones due to arbitrary bending moments Me and horizontal
shearing forces He applied at the outer and inner edges of the shell.
The obtained closed-form results are surprisingly simple, yet cap-
able of modelling mid-side edge effects with very high accuracy.
For the example that was considered, errors were less than 1%.

By examining the final form of the analytical results, it has been
observed that the magnitude of the stresses due to an edge
bending moment Me applied at the equatorial level is practically
independent of the characteristic parameters a, b and A of the
elliptic toroid, while that of the stresses due to a horizontal edge
shear He is dependant on a and A (but not b). Thus the effects of a
given action He are larger on the outer side of the toroid (owing to
the larger value of r2 there). It has been found that the effects of
both Me and He (which constitute the bending disturbance) decay
more quickly on the inner side of the toroid, owing to the larger
value of λ there. This finding is not obvious, since surfaces of ne-
gative Gaussian curvature (such as we find on the inner side of the
torus) may exhibit more extensive propagation of edge effects [1].

Although arbitrary values of M 100 kNm/me = and
H 100 kN/me = were assigned to the toroidal edges for the pur-
poses of studying the ensuing stress distributions within the shell,
in a real problem, the actual values of Me and He depend on the
loading acting over the surface of the shell and the boundary
conditions prevailing at the shell edge; Me and He are usually
evaluated by imposing conditions of compatibility of deformations
at the shell edge, when the effects of the membrane solution for a
particular type of loading are considered simultaneously with the
general effects of Me and He, as developed in the present paper.

In particular, for elliptic toroidal vessels subjected to external or
internal hydrostatic liquid pressure, the theoretical formulation
that has been developed will be useful in providing an accurate
estimate of stresses and deformations in the vicinity of (i) any
mid-side discontinuities of the shell (such as discontinuities in
shell thickness), (ii) axisymmetric vertical supports located at the
mid-sides of the vessel, or (iii) the junction of the thin shell wall
with an external ring stiffener or an internal plate deck located in
the equatorial plane. A calculation of the deformed shape of the
shell midsurface prior to the onset of elastic buckling, which this
formulation will facilitate, can afford valuable insights on the likely
mode of first buckling.



Table 1
Comparison of analytical (ANA) versus finite-element method (FEM) results.

inner surfaceσ ( )ϕ N/mm2 outer surfaceσ ( )ϕ N/mm2 inner surfaceσ ( )θ N/mm2 outer surfaceσ ( )θ N/mm2

ANA FEM ANA FEM ANA FEM ANA FEM

Me1 (outer edge) 240.0 240.3 �240.0 �240.3 204.2 204.1 60.2 59.9
Me2 (inner edge) 240.0 240.6 �240.0 �240.6 204.2 204.0 60.2 59.7
He1 (outer edge) �85.0 �85.1 85.0 85.1 �145.4 �145.6 �145.4 �145.4
He2 (inner edge) �60.2 �60.3 60.2 60.3 �102.8 �103.0 �102.8 �102.7
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