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A linear-elastic theoretical formulation is presented for the complete determination of the state of stress
in large thin-walled liquid-filled vessels in the form of multi-segmented spherical shells. The transfer of
membrane forces between adjacent shell segments is such that only vertical equilibrium of stress resul-
tants needs to be preserved. The edge effect in the vicinity of the shell junctions is quantified on the basis
of an approximate but accurate bending theory for spherical shells. The effectiveness of the developed
formulation is demonstrated by consideration of a numerical example. Agreement with the results of
finite-element modelling is excellent, showing that the presented theoretical formulation is a reliable,
computationally efficient and accurate means of obtaining stresses in large multi-segmented spherical
vessels.
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1. Introduction

Thin synclastic shells of revolution find widespread application
in the storage of liquids [1], on account of the structural efficiency
of shells of double curvature, which allows very thin shells to resist
relatively large hydrostatic pressures without rupture. Contain-
ment shells of double curvature come in a variety of shapes, from
spherical, ellipsoidal, toroidal and other basic mathematical pro-
files, to combinations of these profiles, giving an almost limitless
range of possibilities. The construction may be in thin metal, or
in prestressed concrete. However, where compressive stresses
exist, these structures are vulnerable to local buckling on account
of the thin-ness of the shell, particularly in the case of metal con-
struction. The thickness of the shell may be enhanced in such zones
to counter any tendencies for local buckling, or stiffeners may be
added to the basic shell.

Fig. 1 shows a novel form of construction for high-capacity
liquid-storage vessels. The construction consists of an assembly
of spherical shell segments of different radii, whose centres of cur-
vatures all lie on the axis of revolution of the vessel taken as a
whole. Thus the segments are axisymmetric in shape, where the
uppermost segment is actually a cap, and successive lower
segments are typically spherical frusta. Let us denote the various
shells regions or segments, from top to bottom, by S1; S2; S3 and
so forth. The junctions between these shell segments are denoted
by J1; J2; J3 and so forth. The radii of shell S1; S2; S3, etc. are
denoted by a1; a2; a3 and so forth. As is usual for shells of revolu-
tion, the angular coordinate / (which is the angle between the nor-
mal to the shell midsurface at any given point, and the axis of
revolution of the shell assembly) is used to define the position
of any point on the shell. For the shell cap S1 (uppermost portion
of the assembly), the angular coordinate of the edge of the cap is
denoted by /10. For all other segments Si (i = 2, 3, 4, etc.) below
this, the upper and lower edges of segment Si are defined by the
coordinates /i1 and /i2 respectively.

Starting from the central segment (S4 in our illustration), the
addition of segments S3; S2 and S1, with slope enhancements of
ð/32 � /41Þ, ð/22 � /31Þ and ð/10 � /21Þ at junctions J3; J2 and J1
respectively, adds height and additional storage capacity to the
basic spherical vessel of radius a4. Similar enhancements in capac-
ity are also achieved by the addition of segments S5; S6 and S7 in
the lower part of the vessel. The overall result is a spherical assem-
bly of relatively large storage capacity. It is interesting to note that
if this was a pressure vessel, to achieve the same storage capacity
while keeping the vessel of constant radius would require a sphere
of radius bigger than a4, which would attract higher shell stresses
(these are proportional to the radius), but in the present case of
liquid containment, the stress-reducing benefit of radius limitation
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through segmental construction is offset by the higher hydrostatic
pressures associated with the taller segmented vessel.

The slope and curvature discontinuities at the shell junctions
attract bending disturbances [2–5], but the inward pointing kinks
in the profile could have the effect of stiffening the shell response
there, resulting in a beneficial lowering of hoop stresses. From an
aesthetics point of view, the ‘‘lobed’’ or segmented geometry of
the storage vessel has a pleasing appearance, which might favour
the adoption of this type of vessel in locations where appearance
is a major consideration.

The membrane theory of axisymmetrically loaded shells of rev-
olution is quite appropriate for the calculation of the linear elastic
response of the shell under internal hydrostatic pressure. This the-
ory assumes there is no bending in the shell. However, and as is
well-known [2–5], the membrane theory becomes inadequate in
the vicinity of geometric discontinuities of the type J1; J2; J3, etc.,
and the more comprehensive bending theory of shells must be
invoked.

A useful approach is to regard the membrane solution (for the
applied surface loading on the shell) as an approximate particular
solution of the differential equations describing the behaviour of
the shell, and a bending correction (system of axisymmetric bend-
ing moments and shearing forces applied along the shell edge) as
the homogeneous solution [2–5]; the net response of the shell is
then obtained as the sum of the membrane solution and the bend-
ing correction (or edge effect). Several bending theories of varying
degrees of complexity have been proposed for determining the
state of stress in shells of revolution [2,3]. However, it is important
to select an approach that is amenable to practical computations,
and that is sufficiently accurate.
h
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Fig. 1. Multi-segmented spherical vessel: (a) shell segments, junctions and
corresponding geometric parameters; (b) external appearance of the vessel.
Not many analytical studies on the stress and deformation
behaviour of liquid-containment shells of revolution are being
reported in the literature nowadays, largely due to the fact that
the Finite Element Method (FEM) has become the preferred
method for investigating shell behaviour [6–8], owing to its versa-
tility in handling irregular features of the structure, and in model-
ling non-linear behaviour. However, the analytical approach can
still be extremely useful in those instances where the behaviour
of the shell is essentially linear, and convenient mathematical solu-
tions of the differential equations (governing shell behaviour)
exist. The analytical approach, where possible, has the advantage
of providing stress information without the need for potentially
expensive numerical modelling, and shedding deeper insights into
the behaviour of the shell simply by studying the form of the math-
ematical solutions. Once the analytical results are there, they may
be treated as formulae, ready to be directly applied to other similar
problems. Analytical solutions are also vital in checking FEM
results.

Where smoothness conditions prevail, the membrane solution
on its own can be a very useful tool for exploring the state of stress
in liquid containment vessels in the form of arbitrary shells of rev-
olution [9], or unusual shapes such as the triaxial ellipsoid [10].
However, where the shell geometry features discontinuities, such
as sudden changes in shell thickness [11,12], a more general
formulation accounting for bending effects clearly has to be
employed.

Looking at the more recent literature on liquid-containment
vessels, we find that cylindrical steel tanks have been studied the
most. Wind-induced buckling of cylindrical tanks has received a
considerable amount of attention [13,14]; such tanks are particu-
larly vulnerable when they are empty (the presence of liquid tends
to stabilise the shell against the effects of the wind). Tanks that are
in close proximity of each other attract additional problems of
wind interference, a phenomenon that has been the subject of
some very recent studies [15,16]. Other studies have considered
the response of liquid-storage cylindrical tanks to seismic excita-
tion [17–19]. The collapse behaviour of large cylindrical steel tanks
has also received attention [20], to provide a better understanding
of ultimate limit-state design of such vessels. Much of the research
on metal containment shells has now been codified [21,22].

At wastewater treatment works, egg-shaped digesters (with
their smoothly varying geometry) offer a solution that is superior
to cylindrical tanks and more conducive to the efficient mixing of
sludge. The stresses and deformations in egg-shaped vessels have
been investigated on the basis of the membrane theory and a sim-
plified bending theory for shells of revolution [23,24]. A novel form
of sludge digester in the form of a parabolic ogival shell has also
been proposed [25], and investigated on the basis of a membrane-
theory formulation, leading to some interesting insights on the
behaviour of this shell form, and a set of design recommendations.

After cylindrical steel tanks, conical steel tanks come second in
having been studied the most, on account of their ease of fabrica-
tion. Most previous studies on conical tanks have either sought to
understand stability behaviour [26], or to develop appropriate
design procedures [27]. Other studies have concentrated on under-
standing shell-junction effects [28,29], or the effects of external
pressure [30]. The stability of vessels in the form of conical-cylin-
drical assemblies is a subject that has also received a considerable
amount of attention [31,32].

For horizontal tanks, deviations from the normal cylindrical
shape have been shown to offer enhanced structural efficiencies
in comparison with conventional profiles [33]. Another class of
vessel that has been studied, albeit to a lesser extent, is that of
toroidal tanks [34], which find application for the storage of lique-
fied petroleum gas (LPG), among others. Depending on the type of
cross-section chosen for the toroid, the stress distribution and
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stability behaviour can differ quite markedly from one toroidal
form to another. For a general appreciation of the great diversity
of shell forms that are available for liquid-storage purposes, the
reader is referred to the excellent survey of Tooth [1]. A general
review of shell buckling has also been conducted by Teng [35].

In this paper, we will focus on large liquid containment shell
structures of the type depicted in Fig. 1, and develop an analytical
formulation for the complete stress determination in such vessels.
The considerations only apply to the behaviour of the shell assem-
bly within the linear elastic range. This is justified since linear elas-
tic response is often used as a basis of preliminary design and
compliance with serviceability requirements, with non-linear sim-
ulations being reserved for investigating large displacements,
buckling and collapse behaviour of the shell.

It is worth pointing out that the presented general solution
strategy for liquid containment vessels of the type in question is
also applicable for other multi-segmented shell structures such
as roof domes, the only difference being the loading to which the
shells are subjected.

2. Loading preliminaries

Assuming the vessel is completely filled with liquid of weight c
per unit volume, the hydrostatic pressure pr on the inside surface
of the shell at a depth h from the top (refer to Fig. 1) is given by

pr ¼ ch ð1Þ

Let us denote by hið/Þ the depth of liquid at the coordinate / of
shell Si. For the very top shell (S1), which has a radius a1, the depth
of liquid at any given point is given by

h1ð/Þ ¼ a1ð1� cos/Þ ½0 6 / 6 /10� ð2aÞ

At / ¼ /10, we have

h10 ¼ a1ð1� cos/10Þ ð2bÞ

For shell S2, which has a radius of a2, the depth of liquid at the
coordinate / of this shell (notice that each shell has its own range
of / values) is given by

h2ð/Þ ¼ h10 þ a2ðcos/21 � cos/Þ ½/21 6 / 6 /22� ð3aÞ

At / ¼ /22, we have

h22 ¼ h10 þ a2ðcos/21 � cos/22Þ ð3bÞ

For shell S3, which has a radius of a3, the depth of liquid at the
coordinate / of this shell is given by

h3ð/Þ ¼ h22 þ a3ðcos/31 � cos/Þ ½/31 6 / 6 /32� ð4aÞ

At / ¼ /32, we have

h32 ¼ h22 þ a3ðcos/31 � cos/32Þ ð4bÞ

In general, for shell Si (i > 2), which has a radius of ai, the depth
of liquid at the coordinate / of this shell is given by

hið/Þ ¼ hði�1Þ2 þ aiðcos/i1 � cos/Þ ½/i1 6 / 6 /i2� ð5aÞ

At / ¼ /i2, we have

hi2 ¼ hði�1Þ2 þ aiðcos/i1 � cos/i2Þ ð5bÞ

A more general way of expressing the results for all shell
regions Si, where this time i ¼ 1;2; . . . ; I (I being the total number
of shell segments, e.g. I ¼ 7 for the vessel in Fig. 1), is achieved
by writing hið/Þ as follows:

hið/Þ ¼ ki � aicos/ ð6Þ

where the parameter ki is a constant defined differently for the var-
ious regions as follows:
for i ¼ 1 : ki ¼ k1 ¼ a1 ð7aÞ
for i ¼ 2 : ki ¼ k2 ¼ h10 þ a2cos/21 ð7bÞ
for 2 < i < I : ki ¼ hði�1Þ2 þ aicos/i1 ð7cÞ
for i ¼ I : ki ¼ kI ¼ hðI�1Þ2 þ aIcos/I0 ð7dÞ

Substituting the above generalised expression for hið/Þ in Eq.
(1), the hydrostatic pressure pr at any given point of any given shell
Si (i ¼ 1;2; . . . ; I) becomes

prð/Þ ¼ chið/Þ ¼ cki � caicos/ ð8Þ
3. Membrane stress resultants

For axisymmetrically loaded shells of revolution, the meridional
and hoop membrane stress resultants (forces per unit length of the
shell, considered positive when tensile) are given by the well-
known general solutions [3–5]

N/ ¼
1

r2 sin2 /

Z
r1r2ðpr cos /� p/ sin /Þ sin /d/þ A ð9Þ

N/

r1
þ Nh

r2
¼ pr ð10Þ

where r1 and r2 are principal radii of curvature of the shell midsur-
face at the point in question, pr and p/ are loading components
(forces per unit area of the shell surface) normal to the shell midsur-
face and tangential to the shell meridian respectively, and A is a
constant of integration.

For a spherical shell, r1 ¼ r2 ¼ a (radius of the spherical shell). If
hydrostatic pressure is the only loading applied, then p/ ¼ 0. Eq.
(9) simplifies to

N/ ¼
1

ai sin2 /
a2

i

Z
pr cos / sin /d/þ Bi

� �
ð11Þ

for every spherical shell region Si of the vessel in Fig. 1. Substituting
the expression for pr (Eq. (8)) into this equation and evaluating the
integral, we obtain

N/ ¼
1
6

ca2
i

sin2 /
2 cos3 /� 3

ki

ai
cos2 /þ Ci

� �
ð12Þ

where the constant of integration Ci has to be evaluated from a suit-
able boundary condition.

The constant of integration Ci for the end shells (shell S1 and
shell SI) may be evaluated from the finiteness condition for N/ in
these regions. For shell S1 (top of the vessel),

Nð1Þ/ ¼
1
6

ca2
1

sin2 /
2 cos3 /� 3 cos2 /þ C1
� �

ð13aÞ

(the notation Nð1Þ/ denoting N/ for shell S1). The finiteness condition
for N/ at / ¼ 0 (apex of the vessel) gives C1 ¼ 1, so that

Nð1Þ/ ¼
ca2

1

6
1� cos /
1þ cos /

� �
ð1þ 2 cos /Þ ð13bÞ

The hoop stress resultant follows from Eq. (10):

Nð1Þh ¼
ca2

1

6
1� cos /
1þ cos /

� �
ð5þ 4 cos /Þ ð13cÞ

These are well-known results for spherical tanks [3,5].
For shell SI (bottom of the vessel), with the parameter kI as

defined by expression (7d), Eq. (12) may be written as

NðIÞ/ ¼
1
6

ca2
I

sin2 /
2 cos3 /� 3

kI

aI
cos2 /þ CI

� �
ð14aÞ
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The finiteness condition for N/ at / ¼ p (the zenith of the ves-
sel) gives

CI ¼ 2þ 3
kI

aI
ð14bÞ

The meridional and hoop stress resultants in this part of the
vessel (shell SI) are therefore:

NðIÞ/ ¼
1
6

ca2
I

sin2 /
2þ 3

kI

aI
sin2 /þ 2 cos3 /

� �
ð14cÞ

NðIÞh ¼
1
6
ca2

I 3
kI

aI
þ 2

1� cos /

� �
ð2 cos2 /� 2 cos /� 1Þ

� 	
ð14dÞ

Consider the interface of shell S1 and shell S2 (that is, junction
J1 in Fig. 1). For shell S1, the value of N/ at junction J1 (where / for
this shell is equal to /10) is given by:

Nð1Þ/


 �
/¼/10

¼ Nð1Þ/1 ¼
1
6

ca2
1

sin2 /10

1� 3 cos2 /10 þ 2 cos3 /10

� �
ð15Þ

For shell S2, the value of N/ at junction J1 (where / for this shell
is equal to /21) is given by:

Nð2Þ/


 �
/¼/21

¼Nð2Þ/1 ¼
1
6

ca2
2

sin2 /21

2cos3 /21�3
k2

a2
cos2 /21þC2

� �
ð16Þ

Fig. 2 shows the forces acting upon the portion of the vessel
above a horizontal cross-section Y–Y located at an arbitrary depth
y below the apex of the vessel and within the domain of shell S2.
We will refer to such a single-edged portion of the vessel as a
cap. Let the radius of the circular edge of the cap be denoted by
R. The force WðyÞ represents the vertical resultant of the hydro-
static pressure acting over the entire surface of the cap. Treating
the cap as a free-body diagram, we see that WðyÞ is balanced by
the vertical component of the stress resultants N/ðyÞ acting along
the circular edge of the cap. We may therefore write:

WðyÞ ¼ N/ðyÞ sin /ð2pRÞ ð17Þ

Let the vertical resultant on the portion of the vessel above
junction J1 (that is, on shell S1) be denoted by Wo. Let the value
of R at junction J1 be denoted by R1. At junction J1, just within shell
S1, we may write

Wo ¼ Nð1Þ/1 sin/10ð2pR1Þ ð18aÞ

and just within shell S2, we may write

Wo ¼ Nð2Þ/1 sin/21ð2pR1Þ ð18bÞ

From these two expressions for Wo, we deduce that

Nð2Þ/1 ¼
sin /10

sin /21

� �
Nð1Þ/1 ð19aÞ
Fig. 2. Forces acting upon a spherical cap above a horizontal section Y–Y.
which is the condition of vertical equilibrium at junction J1. Substi-
tuting the expressions for Nð1Þ/1 and Nð2Þ/1 (Eqs. (15) and (16)) into Eq.
(19a), we obtain

1
6

ca2
2

sin2 /21

2 cos3 /21 � 3
k2

a2
cos2 /21 þ C2

� �

¼ sin /10

sin /21

� �
1
6

ca2
1

sin2 /10

1� 3 cos2 /10 þ 2 cos3 /10

� �
ð19bÞ

giving the solution

C2 ¼
a2

1

a2
2

sin/21

sin/10

� �
1�3cos2 /10þ2cos3 /10

� �
�2cos3 /21þ3

k2

a2
cos2 /21 ð20Þ

Using this result in Eq. (12) (to eliminate Ci for i ¼ 2), we can
write N/ for shell S2 in explicit form, and in turn using the ensuing
expression for N/ in Eq. (10), we also obtain the hoop stress resul-
tant Nh in explicit form. The results are:

Nð2Þ/ ¼
1
6

ca2
2

sin2 /
2cos3 /�3

k2

a2
cos2 /

� �
� 2cos3 /21�3

k2

a2
cos2 /21

� ��

þa2
1

a2
2

sin/21

sin/10

� �
1�3cos2 /10þ2cos3 /10

� �	
ð21aÞ

Nð2Þh ¼ a2pr � Nð2Þ/ ¼
ca2

2

6
6

k2

a2
� cos /

� �
� 1

sin2 /

"

2 cos3 /� 3
k2

a2
cos2 /

� �
� 2 cos3 /21 � 3

k2

a2
cos2 /21

� ��

þ a2
1

a2
2

sin /21

sin /10

� �
1� 3 cos2 /10 þ 2 cos3 /10

� �	�
ð21bÞ

where from Eqs. (7b) and (2b), k2 has the explicit form

k2 ¼ h10 þ a2 cos /21 ¼ a1ð1� cos /10Þ þ a2 cos /21 ð22Þ

For any subsequent shell Si (i > 2), the Ci in Eq. (12) is obtained
from

NðiÞ/ði�1Þ ¼
sin /ði�1Þ2

sin /i1

� �
Nði�1Þ

/ði�1Þ ð23Þ

which is the condition of vertical equilibrium at junction Jði� 1Þ,
noting that the ði� 1Þ in the subscript for N/ refers to junction
Jði� 1Þ between shell Sði� 1Þ and shell Si. Expanding the N/ terms
in Eq. (23) on the basis of Eq. (12), and re-arranging, we obtain

Ci¼
a2

i�1

a2
i

sin/i1

sin/ði�1Þ2

 !
2cos3 /ði�1Þ2�3

ki�1

ai�1
cos2 /ði�1Þ2þCi�1

� �

� 2cos3 /i1�3
ki

ai
cos2 /i1

� �
ð24Þ

where Ci�1 is known from the preceding step. With Ci now
known, the stress resultants NðiÞ/ and NðiÞh for shell Si (where
i ¼ 3;4; . . . ; ðI � 1ÞÞ then follow:

NðiÞ/ ¼
1
6

ca2
i

sin2 /
2cos3 /�3

ki

ai
cos2 /

� �
� 2cos3 /i1�3

ki

ai
cos2 /i1

� ��

þa2
i�1

a2
i

sin/i1

sin/ði�1Þ2

 !
2cos3 /ði�1Þ2�3

ki�1

ai�1
cos2 /ði�1Þ2þCi�1

� �)
ð25aÞ

NðiÞh ¼
ca2

i

6
6

ki

ai
� cos /

� �
� 1

sin2 /
2 cos3 /� 3

ki

ai
cos2 /

� ��"

� 2 cos3 /i1 � 3
ki

ai
cos2 /i1

� �
þ a2

i�1

a2
i

sin /i1

sin /ði�1Þ2

 !
�

2 cos3 /ði�1Þ2�3
ki�1

ai�1
cos2 /ði�1Þ2 þ Ci�1

�	#
ð25bÞ



Fig. 3. Arbitrary junction O and geometric parameters for the upper and lower
shells.
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Note that the above expressions are only valid for regions of the
shell above the level of the supports. For regions below the level of
the supports, the constants have to be evaluated successively from
the bottom upwards (since CI is known) until we get to the
supports.

In the process of calculating the edge effects around the junction
locations (which we will deal with later), the horizontal resultant of
the membrane meridional stress resultants at a junction will be
required. Consider junction Ji between shell Si and shell Sðiþ 1Þ.
The horizontal resultant Hm

i at this junction (the superscript m
denoting association with the membrane solution) is simply given
by the difference between the horizontal components of the mem-
brane meridional stress resultants at the edges of the two shells:

Hm
i ¼ NðiÞ/i cos /i2 � Nðiþ1Þ

/i cos /ðiþ1Þ1 ¼
1
6

ca2
i

sin2 /i2

2 cos3 /i2 � 3
ki

ai
cos2 /i2 þ Ci

� �
cos /i2 �

1
6

ca2
iþ1

sin2 /ðiþ1Þ1

2 cos3 /ðiþ1Þ1 � 3
kiþ1

aiþ1
cos2 /ðiþ1Þ1 þ Ciþ1

� �
cos /ðiþ1Þ1 ð26Þ
Fig. 4. Edge deformations and axisymmetric edge actions at junction O: (a)
horizontal displacements and meridional rotations; (b) horizontal shear forces and
4. Membrane deformations

Relevant to the evaluation of junction edge effects are the defor-
mations d (horizontal displacement at any point on the shell, posi-
tive when away from the axis of revolution) and V (rotation of the
meridian). For axisymmetrically loaded spherical shells, these
deformations may be written directly in terms of stress resultants
N/ and Nh as follows [5]:

dm ¼ a
Et
ðsin /ÞðNh � mN/Þ ð27aÞ

Vm ¼ 1
Et
ð1þ mÞðN/ � NhÞ cot /� d

d/
ðNh � mN/Þ

� 	
ð27bÞ

For the present problem, and considering shell Si, the above
equations become

dm¼ ca3
i

6Et
ðsin/Þ 6

ki

ai
�cos/

� �
� 1þm

sin2 /
2cos3 /�3

ki

ai
cos2 /þCi

� �( )

ð28aÞ

Vm ¼ � ca2
i

Et
sin / ð28bÞ

Let us denote an arbitrary shell junction (J1, J2, J3, etc.) by O. At
junction O (see Fig. 3), let us denote the parameters pertaining to
the upper shell by plain symbols (without a prime), and parame-
ters pertaining to the lower shell by primed symbols. Thus, at a
junction where shell Si is connected to shell Sðiþ 1Þ, the angle
/i2 (corresponding to the lower edge of shell Si) becomes simply
/o, while the angle /ðiþ1Þ1 (corresponding to the upper edge of shell
Sðiþ 1Þ) becomes simply /0o. In this notation, the radii of the upper
and lower shells become simply a and a0, respectively, and so forth.
This notation greatly simplifies the writing down of results for the
junction effects, since the same set of expressions become applica-
ble for all junctions of the vessel.

For such an arbitrary junction O, the expression for the horizon-
tal resultant of the membrane meridional stress resultants (Eq.
(26)) becomes

Hm
o ¼

1
6

ca2

sin2 /o

2 cos3 /o � 3
k
a

cos2 /o þ C
� �

cos /o �
1
6

� ca02

sin2 /0o
2 cos3 /0o � 3

k0

a0
cos2 /0o þ C 0

� �
cos /0o ð29Þ
where the parameters k and C (denoted earlier as ki and Ci for shell
Si) relate to the upper shell, and k0 and C0 relate to the lower shell.

The membrane edge deformations for the upper and lower
shells at junction O (refer to Fig. 4(a) for the positive directions
of these) become:

dm
o ¼

ca3

6Et
ðsin/oÞ 6

k
a
�cos/o

� �
� 1þm

sin2 /o

2cos3 /o�3
k
a

cos2 /oþC
� �( )

ð30aÞ

d0mo ¼
ca03

6Et0
ðsin/0oÞ 6
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a0
�cos/0o

� �
� 1þm

sin2 /0o
2cos3 /0o�3
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� �( )

ð30bÞ
bending moments.
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Vm
o ¼ �

ca2

Et
sin /o ð31aÞ

V 0mo ¼ �
ca02

Et0
sin /0o ð31bÞ

where the thickness parameters t and t0 refer to the upper and
lower shells respectively.

5. Bending solution

Fig. 4(b) shows a system of axisymmetric bending moments and
horizontal shearing forces applied at the edges of the upper and
lower shells at junction O. Each shell will experience interior bend-
ing moments, stress resultants and deformations in the vicinity of
the edge (the so-called ‘‘edge effect’’), in response to the application
of these axisymmetric edge actions. To quantify the edge effects, we
will adopt the asymptotic solution of Hetényi for the axisymmetric
bending of spherical shells [36], which is very accurate provided
that the meridional angle of the shell is not too close to zero or
180� (that is, provided / lies in the range 20� 6 / 6 160�).

Based on the spherical-shell bending theory of Hetenyi [36],
general expressions for interior stress resultants, bending
moments and deformations in a spherical shell, due to axisymmet-
ric bending moments and shear forces applied at the edge of the
shell, have been developed in reference [5]. We may readily apply
the results to the problem depicted in Fig. 4(b).

If the meridional angle measured from the shell edge is denoted
by w for the upper shell and by w0 for the lower shell, it is clear, by
reference to Fig. 3, that w ¼ /o � / for the upper shell, and
w0 ¼ /0 � /0o for the lower shell. Let k and k0 denote the shell slen-
derness parameters; for the upper shell, k ¼ ½3ð1� m2Þða2=t2Þ�1=4

,
and for the lower shell, k0 ¼ ½3ð1� m2Þða02=t02Þ�1=4

.
The results for actions in the interior of the shell and deforma-

tions at the shell edge are as follows (the superscript b denotes that
these quantities are associated with the bending disturbance).

5.1. Upper shell

Nb
/ ¼ � cotð/o � wÞ e�kwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinð/o � wÞ
p 2k

aK1
ðsin /oÞ

1=2Mo sin kw

�

�ð1þ K2
1Þ

1=2

K1
ðsin /oÞ

3=2Ho sinðkwþ bÞ
)

ð32aÞ
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k
2

e�kwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p 2k
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ðsin/oÞ
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4km
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db
o ¼

2k2

EtK1
ðsin /oÞMo �

ka
Et

1þ K1K2
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ðsin2 /oÞHo ð34aÞ
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where

k1 ¼ 1� 1� 2m
2k

� �
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� �
cot /o ð36aÞ
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cot /o ð36bÞ

b ¼ � tan�1ðK1Þ ð37Þ
5.2. Lower shell
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k01 ¼ 1þ 1� 2m
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K 01 ¼ 1þ 1� 2m
2k0

� �
cot /0o ð42aÞ

K 02 ¼ 1þ 1þ 2m
2k0

� �
cot /0o ð42bÞ
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6. Evaluation of edge actions

To evaluate the edge actions Mo;Ho;M
0
o;H

0
o, we apply the

boundary conditions of continuity of net deformations across the
junction of the two shells

dT
o ¼ d0To ð44aÞ

VT
o ¼ V 0To ð44bÞ

and the boundary conditions expressing the equilibrium of an ele-
ment at the interface of the two shells, namely that the net torque
and the net horizontal thrust upon such an element must be zero:

Mo �M0
o ¼ 0 ð45aÞ

Hm
o þ H0o � Ho ¼ 0 ð45bÞ

Net deformations dT
o ; d

0T
o ;V

T
o ;V

0T
o are, of course, given by

superimposing the components due to the bending correction –
expressions (34) and (40) – with their membrane-solution counter-
parts. The latter have already been obtained explicitly (results (30)
and (31)), and may therefore be taken as known quantities. Thus

dT
o ¼ dm
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EtK1
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Ea0t0K 01
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Et0K 01
ðsin /0oÞH

0
o ð47bÞ

From Eq. (45), we obtain the relations

M0
o ¼ Mo ð48aÞ

H0o ¼ Ho � Hm
o ð48bÞ

where Hm
o is a known quantity (result (29)). Using relations (46) and

(47) to write out Eqs. (44) in expanded form, and eliminating M0
o

and H0o from the ensuing pair of equations (using relations (48)),
we obtain a pair of simultaneous equations in two unknowns Mo

and Ho, which upon solving yield

Mo ¼
f 1g1 � f 2g2

f 2
1 � f 2f 3

ð49aÞ
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f 2
1 � f 2f 3

ð49bÞ
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The other two edge actions M0
o and H0o then follow from rela-

tions (48).

7. Net stresses

With the shell-edge actions fMo;Ho;M
0
o;H

0
og now known, we

can evaluate, from expressions (32), (33), (38) and (39), the bend-
ing-related stress resultants fNb

/;N
b
h ;N

0b
/ ;N

0b
h g and bending

moments fM/;Mh;M
0
/;M

0
hg in the two shells. The net stresses on

the inner and outer surfaces of the two shells then follow by super-
imposing the membrane-solution stresses with those stemming
from the bending correction:
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Nm
/

t
þ

Nb
/

t
� 6M/
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h

t
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� 6Mh
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�

6M0
/

t02
ð52aÞ

r0Th ¼
N0mh
t0
þ N0bh

t0
� 6M0

h

t02
ð52bÞ
8. Numerical example

Fig. 5 shows a vessel consisting of three shells of radii a1 ¼ 10 m
(shell A), a2 ¼ 13:473 m (shell B) and a3 ¼ 10 m (shell C). These
meet at junctions J1 and J2 as shown. In the notation of the present
formulation, the shells A; B; C will be denoted by S1; S2; S3
respectively. The uppermost shell (shell S1) has an angle of open-
ing /10 ¼ 60�; the bottom shell (shell S3) has an angle of opening
/30 ¼ 120�; the middle shell (shell S2) has angles of opening
/21 ¼ 40� at junction J1 and /22 ¼ 140� at junction J2. The shells
are assumed to be fabricated from steel plate of constant thickness
t ¼ 0:05 m throughout, giving a minimum radius-to-thickness
ratio of 200 for the vessel. The Young modulus of steel will be taken
as E ¼ 200� 109 N=m2, and the Poisson ratio of steel as m ¼ 0:3.

The geometrical configuration of the whole assembly is sym-
metrical about the equatorial (middle) plane of the vessel. The ves-
sel is assumed to be axisymmetrically supported in the lower
region of shell S3, the distance of the supports (from junction J2)
being such that the edge effects at the supports do not significantly
influence the edge effects at junction J2 (which is valid if the loca-
tion of the supports is below the level / ¼ 150�). It is assumed that
the vessel is completely filled with water of unit weight
c ¼ 10� 103 N=m3. A brief summary of the correct sequence of
calculations is as follows:

First, we calculate the depth parameters h10 and h22 using Eqs.
(2b) and (3b) respectively, then the parameters k1, k2 and k3 for
the three shells using Eqs. (7a), (7b) and (7d) respectively. The con-
stant of integration of the membrane solution for the top cap (shell
S1) is C1 ¼ 1. The constants of integration C2 and C3 (for shells S2
and S3 respectively) are evaluated from Eqs. (20) and (24) using



Fig. 5. Geometric parameters of the numerical example.
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Fig. 6. Variations of stresses with arc length s over the full profile of the vessel (top
to bottom): (a) meridional stresses; (b) hoop stresses. In the legend, the symbol m
denotes membrane stresses, T(i) denotes total stresses on the inner surface of the
shell, and T(o) denotes total stresses on the outer surface of the shell.
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the relevant geometric parameters. The variations of membrane
stress resultants in shells S1, S2 and S3 then follow from Eqs.
(13), (21) and (25). We then use Eq. (29) to evaluate the horizontal
resultant of the membrane meridional stress resultants at the
junctions, and Eqs. (30) and (31) to evaluate the membrane
deformations at the junctions. That finishes the calculation of all
relevant membrane quantities.

The quantities associated with the bending effects are evaluated
next. Knowing the slenderness parameter k for each of the three
shells, we evaluate the bending-solution parameters represented
by Eqs. (35)–(37) for the upper side of a given junction, and Eqs.
(41)–(43) for the lower side of a given junction. The parameters
ff 1; f 2; f 3; g1; g2g are evaluated from Eqs. (50); the actions
fMo;Hog at the upper edge of a given junction follow from Eqs.
(49), while the actions fM0

o;H
0
og at the lower edge of a given junc-

tion follow from Eqs. (48). Using these values of fMo;Ho;M
0
o;H

0
og,

the bending-related stress resultants fNb
/;N

b
h ;N

0b
/ ;N

0b
h g and bending

moments fM/;Mh;M
0
/;M

0
hg in the junction zones are evaluated on

the basis of Eqs. (32), (33), (38) and (39). Combining the membrane
stresses with the bending-related stresses in accordance with Eqs.
(51) and (52) then gives the final stresses in the shell.

A finite-element analysis of the vessel was performed using the
programme ABAQUS [37]. Three-node curved-line (quadratic) axi-
symmetric shell elements with two integration points (SAX2) were
used for the modelling of the entire vessel. The mesh was made
very fine in the neighbourhood of the junctions (3 m on either side
to cover the effective range of the bending disturbance), with each
element subtending an angle of 0:1�. This fine mesh was also used
throughout the lower part of the vessel below junction J2, in order
to properly account for support-related bending effects. Outside
the bending-disturbance zones, a coarser mesh (elements subtend-
ing an angle of 1.0�) was found to suffice.
Axisymmetric support conditions (with all three degrees of
freedom fixed) were prescribed at the location /s ¼ 150� of shell
C, sufficiently distanced from junction J2 (/30 ¼ 120�) to ensure
that edge-disturbance interaction [38] between the supports and
junction J2 was insignificant. Hydrostatic pressure normal to the
shell inner surface was applied. Output results were obtained in
the form of stress components S11 (meridional) and S22 (hoop)
calculated at the integration points of each element.
9. Results and discussion

Fig. 6(a) and (b) shows meridional and hoop stresses (in MPa),
respectively, plotted versus the coordinate s, this being the cumu-
lative distance travelled from the apex of the vessel along the
curved meridian, up to the point in question. For points lying on
shell A, this distance is simply the arc length over shell A up to
the point in question; for points lying on shell B, it will be the full
arc length of shell A, plus the additional arc length from junction J1
over shell B up to the point in question; for points lying on shell C,
the distance s will be the sum of the full arc lengths of shells A and
B, plus the additional arc length from junction J2 over shell C up to
the point in question. The range of s covered by the plots is
0 6 s 6 37:5 m.
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Fig. 7. Meridional stress variations in the vicinity of the shell junctions: (a) junction
J1; (b) junction J2. In the legend, the symbol m denotes membrane stresses, T(i)
denotes total stresses on the inner surface of the shell, and T(o) denotes total
stresses on the outer surface of the shell.
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Fig. 8. Hoop stress variations in the vicinity of the shell junctions: (a) junction J1;
(b) junction J2. In the legend, the symbol m denotes membrane stresses, T(i)
denotes total stresses on the inner surface of the shell, and T(o) denotes total
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Table 1
Meridional stress values (in MPa) at the junction locations.

Junction J1 Junction J2

rm
/ rT

/ ðouterÞ rT
/ ðinnerÞ rm

/ rT
/ ðouterÞ rT

/ ðinnerÞ

Upper side 2.2 18.0 �13.0 �23.3 �141.0 102.4
Lower side 3.0 19.0 �12.1 �17.3 �137.1 106.3

Table 2
Hoop stress values (in MPa) at the junction locations.

Junction J1 Junction J2

rm
h rT

h ðouterÞ rT
h ðinnerÞ rm

h rT
h ðouterÞ rT

h ðinnerÞ

Upper side 7.8 22.6 13.4 92.4 �23.4 50.5
Lower side 10.5 22.6 13.4 68.6 �23.3 50.3
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In these plots, the gradually varying curves are the membrane
stresses frm

/ ;rm
h g, while the sharply oscillating curves in the vicin-

ity of the junction locations represent total stresses on the inner
and outer shell surfaces, that is frT

/ðiÞ;rT
/ðoÞg for the meridional-

stress variations in Fig. 6(a), and frT
h ðiÞ;rT

h ðoÞg for the hoop-stress
variations in Fig. 6(b). Some observations are as follows:

(i) As expected, the membrane-stress variations show disconti-
nuities (or jumps) at both junctions J1 and J2. On combining
the membrane stresses with the stresses due to the edge
effect, the total-stress variations show continuity in values
(but not of slope) across the junctions.

(ii) The bending-disturbance stresses at the lower junction are
several times larger than those at the upper junction; this
is because the larger hydrostatic pressures in the lower part
of the vessel cause bigger membrane-deformation incom-
patibilities, in turn inducing larger bending effects.

(iii) The bending-disturbance stresses are very localised to the
shell junctions, dying out within a distance of only 2.5 m
on either side of the junctions. However, within these nar-
row zones, they sharply rise to magnitudes that are several
times larger than the calculated membrane stresses.

(iv) At both the upper and the lower junctions, the bending-
disturbance effects result in net meridional stresses in both
tension and compression that are relatively large in
comparison with the surrounding membrane stresses.
(v) On the other hand, while the bending disturbance increases
the relatively modest membrane hoop tension at the upper
junction, it has the beneficial effect of sharply lowering the
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Fig. 9. FEM results: meridional stress variations in the vicinity of the shell
junctions: (a) junction J1; (b) junction J2.

0

5

10

15

20

25

(a)

(b)

5 7 9 11 13 15 17

s (m)

Upper Junc�on
Hoop Stress (MPa) Outer Surface
Hoop Stress (MPa) Inner Surface

-30

-10

10

30

50

70

90

110

24 26 28 30 32 34 36 38

S (m)

Lower Junc�on

Hoop Stress (MPa) Outer Surface

Hoop Stress (MPa) Inner Surface

Fig. 10. FEM results: hoop stress variations in the vicinity of the shell junctions: (a)
junction J1; (b) junction J2.

Table 3
Analytical versus FEM results for junction locations (values in MPa).

Junction J1 Junction J2

rT
/ ðoÞ rT

/ ðiÞ rT
h ðoÞ rT

h ðiÞ rT
/ ðoÞ rT

/ ðiÞ rT
h ðoÞ rT

h ðiÞ

ANA 18.5 �12.6 22.6 13.4 �139.1 104.4 �23.4 50.4
FEM 17.6 �12.6 22.1 13.3 �137.5 99.7 �23.1 49.5

30 A. Zingoni et al. / Engineering Structures 87 (2015) 21–31
much larger membrane hoop tension at the lower junction,
with the result that outer parts of the shell end up being
slightly in compression.

(vi) The inward-pointing kink in the vessel profile at junction J2
has the same effect as circumferentially prestressing the
smooth shell at this level (in order to counter hoop tension
due to outward hydrostatic pressure). However, the benefit
is only very localised.

To see more clearly what is happening in the vicinity of the
junctions, the meridional stress variations around junction J1 have
been magnified in Fig. 7(a), while those around junction J2 have
been magnified in Fig. 7(b). Similarly, Fig. 8(a) shows magnified
hoop-stress variations around junction J1, while Fig. 8(b) shows
magnified hoop-stress variations around junction J2. Tables 1 and
2 feature meridional and hoop stress values (in N=mm2) at junc-
tions J1 and J2, for the upper and lower sides of the junctions.

The results of the finite-element analysis are plotted in Figs. 9
and 10. Comparing Fig. 7(a) versus 9(a), 7(b) versus 9(b), 8(a) ver-
sus 10(a), and 8(b) versus 10(b), we can see that the agreement
between analytical and FEM stress variations is excellent. Table 3
compares analytical and FEM stress values at the junction loca-
tions, with the analytical values being the average of the values
on either side of the junction. The agreement is very close (gener-
ally within 2%), showing that the theoretical formulation devel-
oped in this paper is very accurate.
10. Concluding remarks

A theoretical formulation for the complete determination of the
state of stress in large thin-walled liquid-filled vessels in the form
of multi-segmented spherical shells has been presented. The for-
mulation assumes that the transfer of membrane forces between
adjacent shell segments is such that only vertical equilibrium of
stress resultants needs to be preserved. The edge effect in the
vicinity of the shell junctions is accounted for by an axisymmetric
bending theory for spherical shells.

The formulation has been applied to the example of a large
3-segmented vessel, and the results compared to those obtained
from finite-element modelling. Excellent agreement between the
theoretical and FEM results has been obtained, showing that the
presented theoretical formulation is reliable and very accurate.
The analytical formulation (which may easily be programmed)
may be used to perform rigorous stress analyses of multi-
segmented spherical vessels in lieu of finite-element modelling,
or to validate new finite-element programmes.
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