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Abstract
This paper is the last in a series of three which deals with numeric techniques for biological reaction systems. The dynamic problem involves
solving a set of coupled ordinary differential equations. A multirate technique based on Gear's approach is developed. The method incor-
porates a variable steplength facility.

Introduction

In practice the inputs to a biological system are unlikely to remain
constant. Because the influent to the system varies with time, the
mass balance equations describing the response of the system will
take the form of a set of differential equations incorporating
time-dependent terms [see Eqs. (14) to (21) of Part 1 in the series,
for example.] This set of equations will define how the values of
the concentrations of each compound in each reactor (the state
variables) vary with time.

Solving the set of simultaneous differential equations is an
initial value problem. The magnitudes of the concentrations of
each compound in each reactor are specified as the initial condi-
tion, and thereafter the equations are solved by integrating for-
ward in time. In this way, the changes in concentration in each
reactor can be tracked, subject to the variations in the influent
flow rate and concentrations. In certain circumstances, such as an
activated sludge system, the influent pattern of flow rate and
concentration is repeated closely from day to day i.e. a daily cyclic
basis. A useful facility, therefore, is to predict the steady state
cyclic response when it is assumed that the influent pattern is
repeated identically from day to day. Because the initial values
are only approximations, finding this solution will require in-
tegrating forward through perhaps many cycles until convergence
to the solution is attained. Convergence in this case requires that
the cyclic concentration response of each compound in each reac-
tor is identical from cycle to cycle, and the values at the start and
end of each cycle are the same.

The set of differential equations describing the response of a
biological system under dynamic conditions will contain non-
linear terms, as did the mass balance for the steady state case. The
task of finding the solution to such a set of non-linear ordinary
differential equations is certainly not unique to biological
systems. Many systems of interest to engineers and scientists are
described by non-linear differential equations. A multitude of
numerical integration techniques exists for the solution of these
sets of equations. Consequently, when faced with such a set of
equations, the problem in finding a numerical method is the
selection of an appropriate one from the many diverse methods
available.

This paper outlines the selection of an integration scheme
appropriate for the dynamics of biological reaction systems. In
the selection, the approach taken was to first establish a rudimen-
tary integration module which was then refined and improved. In
the process of refining the module, a greater understanding of

the actual dynamics of the system was generated. Thus, through
an interactive process, the integration routine was gradually
tailored to better meet the demands of the biological system
under consideration. The chronological development of the in-
tegration module is presented here. Information concerning
general aspects of integration and the earlier versions of the
module are included as the detail facilitates developing a broader
understanding of the dynamic problem.

General comments on using numerical integration
techniques

Because the exact solution to the set of differential equations is
not, in general, known and cannot be calculated analytically, a
numerical integration technique will be required to provide an
approximation to the solution. A common approach, which will
be the focus of this presentation, is to use a time-stepping or dif-
ference method which approximates the solution by its value at a
sequence of discrete points called the mesh points. Given a dif-
ferential equation y'(x) = 0, a difference method provides some
rule for approximating y at a point xn (y (xn)) in terms of the
value of y at xn _, and possibly at preceding points. Ideally, the
solution should be represented by its actual value at each mesh
point so that it can be approximated to high accuracy by inter-
polation between the mesh points. However, the exact solution
to the differential equation is not known, so it is always an ap-
proximation that is sought. Many techniques assume that the
mesh points are equally spaced. However, since the stepsize
seems to have an effect on the error introduced, it is usually possi-
ble to vary the mesh spacing to account for this. For the moment,
it will be assumed that the mesh spacing remains constant during
the stepping procedure.

The simple Euler method

The simplest stepping technique available is Euler's rule. The
value of the dependent variable at one point is calculated by
straight line extrapolation from the previous point. Consider the
function y with

y1(x) = dy = f (x,y)
dx (1)

The value of y at xn + 1 = (xn + h) may be approximated by a
Taylor's expansion. Truncating after the first two terms in the
series yields:

y(xn + h) = y(xn) + h f(xn ,y(xn)

where h = steplength

(2)
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The error in this approximation is described by the remaining
terms in the Taylor's expansion:
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