
Abstract
It is key for national economic planning to build the
tools to forecast energy demand from major sectors
like transport in a credible way. As a starting point,
this requires building a sufficiently detailed ‘bottom-
up’ picture of technologies and their activity levels
in the recent past. A vehicle parc model was devel-
oped for South Africa to feed transport demand and
data on the fleet into a national energy systems
model, the South African TIMES model, which is a
least-cost optimisation model of the TIMES/
MARKAL family. Detailed assumptions were devel-
oped for 24 vehicle typologies that included the vin-
tage profile, annual mileage and its relationship with
age, fuel economy and its improvement over time,
and occupancy and load factor. Combining these
assumptions, the model was successfully calibrated
over 2000–2014 with the national registration
database, national fuel sales statistics and, on the
freight side, with estimates of the demand for
ton.km published by the University of Stellen-
bosch’s Department of Logistics (2014 only). A
demand for passenger.km was also calculated,
which agreed well with national transport surveys. A

range of detailed indicators were produced for the
vehicle typologies and some interesting trends
observed, including the steady dieselisation of the
light vehicle fleet over the study period and the stag-
nation of passenger car fuel economy, despite legis-
lation in the European Union. The present study
believes that this updated data-rich picture of the
road transport vehicle parc will support other stud-
ies and national policy and planning initiatives.

Keywords: freight demand, fuel economy, mode
share, greenhouse gas emissions, vehicle fleets,
modelling
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1. Introduction
The national energy balance for 2013 indicated that
the transport sector accounted for an estimated
30% of South Africa’s total final consumption
(Department of Energy (DoE), 2013). The sector
has remained almost completely dependent on liq-
uid fuels, which accounted for 98% of demand in
the sector in 2013 and 83% of all liquid fuels used
in the economy (DoE, 2013). 

Large investments and long lead times are
involved in meeting the demand for liquid fuels and
transporting liquid fuels from point of supply to the
point of demand. In addition, the choice of primary
energy and the transformation process can have
substantial impacts on society and the environment.
Investment decisions must, therefore, be informed
by planning processes such as anational integrated
energy plan. The first step in the planning process is
to build an understanding of the current demand
for mobility of passengers and freight in the econo-
my and the drivers of mobility in the transport sec-
tor and develop credible scenarios of how these will
evolve over time. Furthermore, the need for mobil-
ity is not something that can be directly measured
or observed and, therefore, requires estimation
based on a number of observable variables such as
how many people are driving private vehicles, the
demand for the movement of goods in the current
economic environment, and how many vehicles are
on the road network (Merven, et al., 2012).

The Energy Research Centre at the University of
Cape Town and the South African National Energy
Development Institute used the South African
TIMES Model (SATIM) in 2012, which is a least-cost
optimisation model of the TIMES/MARKAL family,
to assess the demand for energy from transport to
2050 (Merven, et al., 2012). The outputs of that
study were widely applied (Department of
Environmental Affairs, 2014; DoE, 2012; DoE,
2016; Gajjar & Mondol, 2015). A series of papers,
of which this is the first, will update these outputs,

improving on some of the gaps identified in the pre-
vious work and presenting new work based on out-
puts of a version of the SATIM energy systems
model that is linked to an economic model (Merven
et al., 2017). This first paper will focus on the multi-
year calibration of the model using historical data
and present a detailed picture of the national freight
and passenger road transport system. The main
improvement on the previous work is a longer his-
torical window for calibration and more granular
detail on heavy commercial vehicles so that the
demand for freight (ton.km) could be calibrated to
the national figure published by the Department of
Logistics, University of Stellenbosch (Havenga, et
al., 2016a). The data-rich picture presented is
intended to support the development of projections
of transport energy sector demand for infrastructure
planning purposes, the compilation of greenhouse
gas inventories, and the assessment of greenhouse
gas mitigation measures, amongst other uses. 

2. The demographics of the vehicle parc in
South Africa
South Africa is made up of nine provinces of
marked difference in size, population density and
levels of economic activity, as shown in Table 1.
Economic activity and car ownership are highly
concentrated in small but densely populated
Gauteng, for example, in contrast to the arid and
sparsely populated Northern Cape. Three provinces
– Western Cape, Gauteng, and Kwazulu-Natal with
the country’s biggest port, Durban – together
account for 55% of the population, 69% of regis-
tered vehicles and 64% of gross domestic product.
Much of this activity is concentrated in the cities of
Cape Town, Johannesburg, Pretoria and Durban.
This geography drives a large demand for transport,
allowing the country to be described as having a
‘spatially challenged economy’ (CSIR, 2013). 

The average total motorisation for South Africa,
estimated for mid-2016 at 192 vehicles per thou-
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Table 1: Demographics and motorisation of South Africa’s provinces.

Province Population Total self-propelled Share of Motorisation Contribution to Land area
(mid 2016)1 vehicles vehicles (%) (vehicle/1000 national GDP share (%)

(mid 2016)2 persons) (2015)3 (%)

Eastern Cape 7 061 700 719 939 6.7 102 7.8 14.0

Free State 2 861 600 527 459 4.9 184 5.1 11.0

Gauteng 13 498 200 4 163 142 39.0 308 34.0 1.5

KwaZulu-Natal 11 079 700 1 477 700 14.0 133 16.0 7.7

Limpopo 5 803 900 604 318 5.6 104 7.2 10.0

Mpumalanga 4 328 300 733 541 6.8 169 7.5 6.0

Northern Cape 1 191 700 234 453 2.2 197 2.1 31.0

North West 3 790 600 528 044 4.9 139 6.5 8.7

Western Cape 6 293 200 1 721 222 16.0 274 14.0 11.0

Total 55 908 900 10 709 818 100.0 192 100.0 100.0
1 = StatsSA (2016a), 2 = eNaTiS (2016), 3 = StatsSA (2016)
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sand inhabitants, now just exceeds the global aver-
age of 180 and is considerably more than the
African average of about 44 (Organisation Inter-
nationale des Constructeurs d’Automobiles, 2016).
But, even for the outlier of Gauteng, vehicle owner-
ship is significantly lower than the 500 to 800 for
developed countries and is more comparable to the
BRICS counterparts of Russia and Brazil. 

3. Modelling transport demand
In a bottom-up approach, energy consumption by
any transport sector is directly driven by two factors:
vehicle-km travelled, and conversion efficiency of
the vehicle (referring to a road, rail or air vehicle).
The vehicle-km travelled are in turn driven by the
needs of society and the economy to move people
and goods. Conversion efficiency depends mostly
on the underlying technology, i.e., type of vehicle,
fuel and vintage that make up the vehicle parc, and
to some degree the patterns of utilisation of that
technology. It is useful to treat passenger transport
and freight transport separately, as the needs for
moving people and goods have slightly different
drivers and technologies.

(Armenia et al. 2010) proposed a detailed sys-
tems dynamics model, depicted by the causal loop
in Figure 1, to represent the demand for mobility
and energy consumption of passenger transport.
The model includes a number of drivers and inter-
actions which define energy consumption in pas-

senger transport and illustrates the complex interac-
tions and extensive data needs required to effective-
ly model this sector. A diagram for road freight
transport would be similar, in that fuel consumption
is still the direct result of vehicle-km travelled and
vehicle fuel efficiency. Several of the elements in
Figure 1 are included in the calibrated vehicle parc
model in the present study. These are: distance trav-
elled per vehicle, total kilometres travelled, fuel con-
sumption, fuel efficiency, total vehicle fleet, and
average age of vehicles. Certain factors in Figure 1
affecting the vehicle-km travelled and fuel efficien-
cy, such as traffic congestion, are difficult to quantify
as they are not well understood locally. To compen-
sate for this, the model was calibrated by adjusting
the variables until the output matches the known
fuel sales data. Once calibrated, the present study
could be reasonably sure that the model returns
realistic estimates of the number of operating vehi-
cles and their annual distance travelled. By making
an informed assumption regarding the average
occupancies of different vehicle types, total private
travel demand could be estimated.

4. Research methodology
SATIM is an energy-economic-environment systems
modelling framework developed by the Energy
Research Centre, University of Cape Town (Altieri,
2015; Energy Research Centre, 2015). It is devel-
oped according to ETSAP’s TIMES modelling
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Figure 1: Causal diagram for energy needs for passenger transportation (Armenia et al., 2010).



framework, which has been linked to a computa-
tional general equilibrium model known as eSAGE.
Both tools are developed using the general algebra-
ic modelling system, but a number of supporting
models developed on other platforms also support
the modelling framework, as shown in Figure 2.

The present study focused on methodology,
assumptions and outputs of the vehicle parc model
component of the modelling framework hown in
the highlighted textbox in Figure 2. The function of
this model is to build a ‘bottom-up’ picture of the
vehicle parc that can be used to generate a credible
estimate of the following key variables to enable the
energy system model (TIMES) to project energy
demand forward:
• public and private passenger.km by mode/vehi-

cle typology (e.g., gasoline minibus public or
diesel car private);

• freight ton.km by mode/vehicle typology (e.g.
gasoline light commercial vehicle (LCV)); and

• the stock, vintaged by age, of each typology
and representative activity (annual mileage)
and efficiency assumptions for each typology.
These assumptions need to be calibrated so
that the fuel demand of the model matches sup-
ply side data (fuel sales) as closely as possible.

The road vehicle parc is characterised by a long
vintage window of around 30 years, given the high
average age of stock in South Africa. The character-
istics of new stock added and the activity levels of
old stock can change annually. Thus, while calcula-
tions in this type of model are possible, the multipli-
cation of many large arrays is required. Lumina’s
Analytica platform (http://www.lumina.com/), an
array-based modelling tool with a powerful visual
interface, was selected for the first study (Merven et

al., 2012) for this reason. This vehicle parc model
was updated for the present study and extended as
follows:
• heavy commercial vehicles which were a single

aggregate in the first study were disaggregated
into nine vehicle typologies to assist with cali-
brating the model to the estimate of freight
demand (ton.km) published by the Department
of Logistics, University of Stellenbosch (Hav-
enga, et al., 2016a);

• extension of the calibration window from seven
to 14 years, spanning 2000–2013; and

• a parallel version in the open source R language
was coded to aid collaboration; final calibration
was performed in the R version.

4.1 Calculation and calibration
A schematic representation of the vehicle parc
model and its data inputs and validations is shown
in Figure 3. The procedure for calculation and cali-
bration using the above parameters was broadly as
follows:
1. Historic vehicle sales data collected by the

National Association of Automobile
Manufacturers of South Africa (Lightstone Auto,
2015) were adjusted by scrapping curves to
develop an estimate of the stock of vehicles of
different vehicle types for each model year, and
the estimate was calibrated to the electronic
national administration traffic information sys-
tem (eNaTiS) registration database (eNaTiS,
2016) by adjusting the rate of scrapping.

2. Vehicle mileage estimates were developed for
both passenger and freight vehicles, assuming
that the annual mileage travelled by vehicles
decays from an initial value as they age. 

3. Fuel demand was calculated by multiplying the
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Figure 2: The SATIM transport modelling framework.



kilometres travelled, the fuel economy, and the
number of vehicles for a vehicle typology. The
typology fuel demands were summed to yield
the vehicle parc fuel demand for gasoline and
diesel and compared with aggregate fuel sales
data.

4. An additional step for freight vehicles involved
adjusting the average maximum capacity,
capacity factor and mileage so that the model
calibrated not only against fuel sales but also
against published estimates of ton.km road
freight demand found in the literature (Hav-
enga, et al., 2016a).

4.2 Vehicle typologies and calibration
targets
The typologies adopted for the vehicle parc model
are presented in Tables 2 and 3, mapped to fuel
type and more aggregate classifications. The aim for
the model was to calibrate model fuel demand
against data on road transport fuel sales across a
window of 2000–2014. In the case of gasoline,
100% of sales were assumed to be used by road
transport, but this was challenging in the case of
diesel because, unlike gasoline, diesel is used for a
wide range of off-road and stationary uses, includ-
ing the fuelling of Eskom’s Ankerlig and Gourikwa
power stations since 2007. The South African
Petroleum Industry Association (SAPIA) and its
members disaggregate fuel sales using a quasi-sec-
tor typology called trade categories, and this data is
then collated and made available on request by the
DoE (DoE, 2017). These categories offer some indi-
cation of what portion of diesel is used by road
transport if an assumption of the share of road
transport diesel can be made for each trade catego-
ry. An assumed share of road transport in each
trade category was adjusted iteratively until there
was a relatively smooth trend in the shares of the
sector demands over time, as shown in Figure 4.
The resulting road transport share of diesel was

used to estimate a diesel calibration target for the
model.

4.3 Other calibration aspects
4.3.1 Vintage profile
It is necessary to estimate the distribution of vehicles
of different ages and technology levels in the parc,
known as the vintage profile, to assess the impacts
of new technologies entering the market such as on
energy demand. The vintage profile can be deter-
mined by establishing a distribution of the probabil-
ity of a vehicle surviving as a function of its age for
each vehicle typology. Further detail on how this
was done is provided in the supplementary file.1

4.3.2 Vehicle mileage
The annual mileage of vehicles, when averaged
over a large number, appeared to decay steadily
from an initial value for each year of operation
(Jackson, 2001; University of California at
Riverside, 2002). This is important because it
means that older, more-polluting vehicles would
contribute proportionally less to transport demand
than newer vehicles. This data is, however, not
mandatory for capturing in the South African
licence-renewal process and was not available.
Mileage assumptions based on the United States
Environmental Protection Agency’s Mobile6 model
methodology (Jackson, 2001) were, therefore,
adopted and scaled into the calibration process.
Further detail on how this was done is provided in
the supplementary file.

4.3.3 Fuel economy
The fuel economy of new vehicles was considered
to decrease by 0.5% per annum between 2000 and
2014 for model implementation in the present
study. This value was generally consistent with the
more specific values in Europe during the period
used in the present study. Details can be seen in the
supplementary file.

33 Journal of Energy in Southern Africa  •  Vol 29 No 2 • May 2018

Figure 3: Schematic representation of the vehicle parc model and its data inputs and validations.



4.3.4 Occupancy and load factor
No published local empirical data was available to
guide the deliberations for vehicle occupancy and
load factor needed to calculate the demand for the
model’s passenger.km and ton.km. Initial freight
load factors were drawn from the Road Freight
Association’s (RFA’s) vehicle cost schedule (RFA,
2009) and then calibrated to the ton.km estimate
for 2014 published by the Department of Logistics,

University of Stellenbosch (Havenga, et al., 2016a).
The occupancy for passenger vehicle was taken
from Merven et al. (2012). Details on load factors
and occupancy can be seen in the supplementary
file.1

5. Results and discussion
The model achieved a generally good calibration
for vehicle population and fuel demand and gener-
ated a number of statistics of interest for the South
African vehicle parc. The aggregate calibration of
the model with the registration database eNaTiS
showed agreement within 3%, as shown in Figure
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Table 2: Typology of vehicle parc model
mapped to aggregate categories: passenger

vehicles. 

Vehicle type (eNatis Fuel type Vehicle parc 
and the SATIM model ID*
energy system model)

Passenger car Diesel CarDiesel

Passenger car Gasoline Gasoline

Passenger car Diesel CarHybridDiesel

Passenger car Gasoline CarHybridGasoline

Passenger car Electricity CarElectric

Bus Diesel BusDiesel

Minibus taxi Diesel MBTDiesel

Minibus taxi Gasoline MBTGasoline

Sport utility vehicle#DieselFigure 4: Estimate of road
transport share of diesel sales less Eskom
consumption for calibration, where DOE EB:
DoE’s energy balances.SUVDiesel

Sport utility vehicle Gasoline SUVGasoline

Sport utility vehicle Gasoline SUVHybridGasoline

Motorcycle Gasoline MotoGasoline
* These IDs are used in graphs and tables in the following
sections.
# Spread between ‘light passenger vehicle’ and ‘light load
vehicle’ in eNaTiS data.

Figure 4: Estimate of road transport share of diesel sales less Eskom consumption 
for calibration, where DOE EB: DoE’s energy balances.

Table 3: Typology of vehicle parc model
mapped aggregate: Freight vehicles.

Vehicle Weight Fuel type Model ID*
type typology (kg)

LCV <3 000 Diesel LCVDiesel

LCV <3 000 Gasoline LCVGasoline

MCV 3 000–7 500 Gasoline HCV1Gasoline

MCV 3 000–7 500 Diesel HCV1Diesel

HCV 7 501–12 000 Diesel HCV2Diesel

HCV 12 001–16 000 Diesel HCV3Diesel

HCV 16 001–20 000 Diesel HCV4Diesel

HCV 20 001–24 000 Diesel HCV5Diesel

HCV 24 001–32 000 Diesel HCV6Diesel

EHCV 32 001–40 000 Diesel HCV7Diesel

EHCV 40 001–50 000 Diesel HCV8Diesel

EHCV >50 000 Diesel HCV9Diesel
LCV = light commercial vehicle; MCV = medium commercial
vehicle; HCV = heavy commercial vehicle; EHCV = extra-
heavy commercial vehicle
* These IDs are used in graph and tables in the following
sections
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5. This allowed the split of the vehicle parc into its
typologies with some level of confidence, as pre-
sented in Tables 4 and 5.

The model indicated steady dieselisation of the
light vehicle fleet between 2000 and 2014, as
shown in Figure 6. The registration database
(eNaTiS, 2016) has included a split between diesel
and gasoline vehicles since 2015, and the model
output compared well with this data.

The demand for passenger.km was calculated
by multiplying the calculated vehicle.km with the
assumed occupancy presented in Table 6 for each
typology. The results show good agreement with
other studies (NATMAP, 2005; NHTS, 2013). South
Africa’s car-driving, high-income households and
low-income public transport users live in peripheral

sprawl, so average trip distance is likely to be similar
across modes, so motorised trip-based mode share
and passenger.km mode share compare reasonably
well.

Similarly, the demand for freight transport in
ton.km was calculated by multiplying the calculated
vehicle.km with the assumed load factors, as pre-
sented in Table 8, for each typology. In this case,
however, the load factors were derived from a cali-
bration process against a published figure of 231
billion ton.km for 2014 (Havenga, et al., 2016a).
The detailed calibration results, including a split by
vehicle typology and corridor, metropolitan and
rural operating environments are presented in
Appendix A in the supplementary file.

The energy intensity of road freight transport
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Figure 5: Calibrated vehicle parc model compared to the eNATiS registration database.

Table 4: Vehicle typologies as a fraction of the
passenger road vehicle parc for 2010.

Vehicle typology Count of vehicles Fraction 
(2010) (%)

CarDiesel 221 779 3.6

CarGasoline 4 832 681 78.3

CarHybridDiesel 0 0.0

CarHybridGasoline 1 113 0.0

CarElectic 0 0.0

BusDiesel 21 686 0.4
*MBTDiesel 23 911 0.4
*MBTGasoline 277 064 4.5

SUVDiesel 171 630 2.8

SUVGasoline 252 050 4.1

SUVHybridGasoline 541 0.0

MotoGasoline 372 534 6.0

Total 6 174 988* 100.0
* Total not calibrated to include the ‘Other self-propelled
vehicles’ category in the eNaTiS registration database.

Table 5: Vehicle typologies as a fraction of the
freight road vehicle parc for 2010.

Vehicle typology Count of vehicles Fraction 
(2010) (%)

LCVDiesel 852 698 33.2

LCVGasoline 1 394 106 54.2

HCV1Gasoline 6 061 0.2

HCV1Diesel 120 270 4.7

HCV2Diesel 31 074 1.2

HCV3Diesel 53 763 2.1

HCV4Diesel 12 249 0.5

HCV5Diesel 5 146 0.2

HCV6Diesel 74 175 2.9

HCV7Diesel 19 406 0.8

HCV8Diesel 434 0,0

HCV9Diesel 514 0.0

Total 2 569 897* 100.0
* Total not calibrated to include the ‘Other selfpropelled
vehicles’ category in the eNaTiS registration database.
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was estimated to be 1.9–2.0 MJ/ton.km by dividing
the estimated diesel sales to road transport (the cal-
ibration target) and the model’s forecast of road
freight diesel demand by the demand in ton.km. .
The result compares favourably with international
data for similar markets, such as Australia (shown
as AUS in Figure 7).

Figure 8 shows that the model had excellent
agreement with both gasoline and diesel use during
the calibration years 2000 to 2014, with the excep-
tion of gasoline in 2014, thus providing validation
for the model and the indicators generated from it.

In the version of the model developed for the
present study, the calibration period was extended
compared to the period used in Merven et al.
(2012), resulting in a relatively less-close fit to real
world data, but still within acceptable bounds for
this type of model. The standard deviation of errors
was 4.8% for both gasoline and diesel and was well

under 10%, except for the outliers in 2014 (11%).
The parameters input to the model in this study as
compared with Merven et al. (2012) can be con-
trasted using Phase 1 column in Tables —7, and in
the tables in the supplementary section. A compar-
ison for gasoline cars only is presented in Table 7. 

Both fuel economy and mileage in the present
study are about 10% lower, which may reflect an
improved estimate because of the longer calibration
window, but to some extent the differences also
arise from the pressure on the calibration of outliers
in demand in 2008, 2013 and 2014. The possible
causes for this are discussed in more detail below.
The data presented in Table 13 of the supplemen-
tary file implies that the fuel consumption improve-
ment was relatively low at 0.5% per annum over
the study period. The population of gasoline vehi-
cles, however, still grows at over 3% per annum,
despite dieselisation. If vehicle mileage was con-
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Figure 6: Modelling trend in dieselisation of the light vehicle fleet compared with the registration
database for 2015.

Table 6: Model-generated passenger transport data for South Africa (2014).

Total Total Km per Occupancy Activity Modal share NATMAPa NHTSb 

vehicles vehicle-km vehicle (person/ (billion (2014) (2005) (%) (2013)(%) 
(1000 (billion (1000 vehicle, %) p.km) (%) of p.km of motor- of motor-
vehicles) vehicle-km) km) ised trips ised trips

Public

Large bus 23 0.61 26.1 25 15.2 6 10 8

MBT 278 7.40 26.6 14 103.7 38 40 35

Trainc 13.9 5 8 5

Sub-total 132.7 49 58 48

Private

Pass. car 5722 83.5 14.6 1.4 116.9 43.0 52.0

SUV 644 12.8 19.9 1.4 18.0 7.0

M/cycle 478 3.6 7.6 1.1 4.0 1.5 0.4

Sub-total 138.9 51.5 40.0 52.4

Grand total 271.6
(a) Source: DoT, 2009
(b) Source: Stats SA, 2013 – Calculated by mode taken on allocated travel day - NOT stated mode preference. 
(c) Train data from literature, not the model - Intra�city data only for 2006/2007 (Metrorail, 2007). Data for inter-city is not
published by the respective vendors
P.km = passenger, NATMAP = National transport masterplan, NHTS = National household travel survey, MBT = Minibus taxi.
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stant, as assumed by the model, future growth in
gasoline demand would be sustained, as shown in
Figure 8. It can, therefore, be deduced that the
recent drop in demand observed in the gasoline
sales data is driven by consumers travelling less,
while recognising the difficulty of verifying this with-
out empirical investigation. Most notably, local

authorities do not enforce its capture and the eNatis
does not make the limited dataset that has been
accumulated from partial completions available,
despite the annual vehicle registration form histori-
cally having a placeholder for vehicle mileage. The
assumption of 0.5% fuel consumption improve-
ment qualifies that the sources of error in the
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Figure 7: South African road freight (truck) energy intensity in 2014 compared to 
selected OECD markets 1990–2007 (Eoma et al., 2012, Havenga at al., 2016a)

Figure 8. Model’s fuel demand vs actual fuel consumption for 2000 to 2014.

Table 7: Comparison of calibration parameters for gasoline cars between Merven et al. (2012) and the present study.

Year Fuel economy (l/100 km) Annual mileage (km)

New Fleet average New Fleet average

Phase 1 2006 8.3 9.1 24 000 16 169

Present study 2014 7.8 8.2 21 000 14 457



model’s fuel demand relative to observed sales is
likely to include the following:
• short- and long-run elasticity of demand in

response to fuel price variations and average
income due to consumers travelling less;

• other effects on demand for private transport
like changing urban form and fluctuating con-
gestion; and

• the error in the fuel sales data because of
changes in parties responsible for data collec-
tion, compounded by changes in the structure
of the gasoline-fuels value chain.

The model is intended for passing parameters to
a long-term projection model. It does not attempt to
integrate price or income elasticities and assumes
that consumer preference for annual mileage is con-
stant over the period for a given vehicle age.
Considering that the vehicle population grew
monotonically over the study window, any signifi-
cant drop in demand in response to price increase
would, therefore, result in significant error. The
model responds indirectly to low economic growth
through reduced car sales, but, as seen in Figure 5,
this effect is relatively dampened compared to the
fuel demand volatility seen in Figure 8. The periods
of error in the calibration correspond to price
volatility and economic growth variations as shown
in Figure 9, with gasoline seemingly more respon-
sive to price fluctuations, and diesel more respon-
sive to GDP/capita variations. 

The levelling off of GDP/capita caused by a
struggling economy also seems to have depressed
demand for gasoline in a longer-run effect relative
to the calibration from 2012 onwards, presumably
resulting from lower vehicle activity. Figure 8 shows

that gasoline demand recovered in 2015 and 2016
in response to significant real price drops, while
diesel demand remained low. 

Travel time data suggests that congestion and
trip distances have increased in South Africa (SEA,
2017), so another possible reason for the observed
drop in demand is data error. Historically, liquid
fuels were supplied by a regulated oligopoly of the
oil majors who collected detailed demand data to
enable the complex distribution of fuels. The indus-
try has changed as a result of competition legisla-
tion and legislation to enable access to the value
chain by historically disadvantaged entrants. This
resulted in the responsibility for data collection shift-
ing from one of the majors – firstly to the industry
association, SAPIA, and then to the DoE. At the
same time a number of independent wholesalers
emerged, including Afric Oil, Gulfstream Energy,
Mzumbe Oil, Women of Africa Fuel and Oils, Si-
yanda Petroleum, and Yem Yem Petroleum. These
now deal in large volumes in some cases, building
on a base of procurement by the state and state-
owned enterprises (Transport World Africa, 2014;
Greve, 2013). This is to the extent that, while inde-
pendent wholesalers traditionally were not directly
surveyed for the national statistics, they are in some
cases believed to be importing fuel independently
in large enough volumes to introduce significant
statistical uncertainty into the national energy bal-
ance(DoE, 2017b). The DoE has, therefore, not
only taken on a complex statistical function, but
performs this function at the time when the industry
is rapidly becoming more complex and difficult to
survey. It seems likely, then, that the levelling-off of
gasoline demand is temporary and that economic
recovery and ongoing improvement in data collec-
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Figure 9. Gauteng gasoline and diesel prices and GDP/capita, 2000–2014.



tion methods may see the official figure for gasoline
demand rise again by the order of 2–3% per annum
until there is a significant penetration of real-world,
low-fuel economy vehicles into the vehicle parc.

A key aim of this study was to improve on pre-
vious work by calibrating freight demand from the
model with that published by the Department of
Logistics, University of Stellenbosch. The number of
freight vehicle typologies was increased and load
factors adjusted, taking some account of the limited
consultation (Havenga & Simpson, 2016b) that
was possible with the Department of Logistics with-
in the limitations of the present study. A data-rich
output was a calibrated split of ton.km by vehicle
typology and by region (corridor, rural and
metropolitan), presented in Table 8. 

The verified ton.km figure further enabled an
estimate of freight energy intensity for the country,
as presented in Figure 7. This calculation, however,
required an estimate of the diesel sales to road
transport as a calibration target and this can be con-
sidered uncertain given that it was derived from a
trend-smoothing exercise using sales data disaggre-
gated by ‘trade category’, a legacy classification that
gives limited guidance on the commercial activity
the fuel was used for. The DoE is in the process of
moving to International Standard Classifications in
its questionnaires (DoE, 2017b), which may enable
more certain estimates in the future. A further
uncertainty was that the diesel demand by Eskom
was notably high during 2010–2015, and this must
be accounted for in the trend analysis. In addition,
the energy balances for those years (as published at

the time of writing) suggest that the Eskom con-
sumption was excluded from trade category data,
the total of which is equal to total final consumption
excluding transformation. Liaison with the DoE
(2018), however, confirmed that the Eskom con-
sumption is indeed included in the trade category
data and this was, therefore, adjusted downwards
by the additional amount before the share of road
transport was estimated. Improved statistical meth-
ods will, however, only partly reduce uncertainty.
There is no substitute for empirical sector studies
and far more needs to be understood about energy
use in the agriculture, construction and mining sec-
tors, if there should be any certainty that the resid-
ual diesel in the calibration reflects that used by sta-
tionary and off-road activities.

The new freight data presented by the present
study, however, represents a rare attempt to achieve
agreement in key parameters across modelling
efforts by different teams in related fields, and will
hopefully be an example for improved collabora-
tion, more effective validation, and better support
for policy and planning in the energy and transport
spheres. 

6. Conclusions
A vehicle parc model for South Africa incorporating
detailed estimates for efficiencies and activity levels
for a variety of vehicle typologies was developed
and calibrated against national sales of gasoline and
diesel over 15 years, from 2000–2014. The model
has 11 freight vehicle typologies that were used to
develop a parallel calibration of the ton.km demand
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Table 8: Freight demand calibration output by vehicle typology and operating environment.

Assumptions (%) Model freight demand (billion ton.km)

SATIM  Load factor Share of Share of  Share of Total % share of Corridor Metro- Rural
vehicle type (ton/veh) ton.km ton.km ton.km demand politan

that is corridor that is metro that is rural

HCV1Diesel 1.4 0.4 86 14 7.77 3.4 0.03 6.67 1.07

HCV1Gasoline 1.5 8 75 17 0.06 0.0 0.00 0.04 0.01

HCV2Diesel 2.5 10 54 36 2.38 1.0 0.24 1.28 0.86

HCV3Diesel 5.0 24 62 14 16.19 7.0 3.81 10.11 2.27

HCV4Diesel 7.9 38 40 22 6.47 2.8 2.46 2.61 1.40

HCV5Diesel 10.9 53 31 16 3.96 1.7 2.11 1.22 0.63

HCV6Diesel 20.7 54 24 22 142.10 61.4 76.52 34.18 31.41

HCV7Diesel 18.6 55 16 29 31.51 13.6 17.29 4.97 9.26

HCV8Diesel 18.4 57 15 28 1.24 0.5 0.71 0.18 0.35

HCV9Diesel 21.9 57 17 26 0.70 0.3 0.40 0.12 0.18

LCVDiesel 0.4 0 84 16 8.89 3.8 0.03 7.46 1.40

LCVGasoline 0.4 0 82 18 9.98 4.3 0.02 8.19 1.78

tkm calibration comparison

Total 231.3 100.0 103.6 77.0 50.6

Dept of Logistics (Havenga, et al., 2016a) 231.0 103.4 77.0 50.6

Calibration error (%) -0.11 0.20 0.00 0.12



of the model with that estimated by the freight
demand model of the Department of Logistics,
University of Stellenbosch for 2014 (Havenga, et
al., 2016a). This enabled an estimate of the energy
intensity of freight transport for the country (1.9–2.0
MJ/ton.km) to be made, one that can be used to
benchmark the energy efficiency of the freight logis-
tics industry. The model output furthermore pro-
vides a data-rich picture of the activity levels, effi-
ciencies and contribution to meeting passenger and
freight demand of different vehicle typologies.

Some interesting trends emerged from the time
series of input and output data, as follows:
• Steady dieselisation of the light vehicle fleet has

been occurring.
• The fuel economy of the light vehicle fleet has

been improving only very slowly, if at all.
• The consumption of gasoline in particular has

dropped off steadily since 2011 and seems to
relate to lower activity levels, driven by eco-
nomic factors. 

The following important data issues emerged
from the study:
• In general, the quality of energy related data

received was of concern in all the major
sources: fuel sales and registration statistics col-
lated by government in partnership with indus-
try, and vehicle sales data collated by industry
and sold by a private concern as proprietary
data. The following were key issues:

• Metadata is sparse or non-existent.
• Obvious validation checks have sometimes not

been performed – for example, the sum of dis-
aggregates of the same commodity might not
match or time series of quantities have implau-
sible step changes or trends.

• A poor understanding of the technical details is
sometimes apparent – for example, the differ-
ence between CO2 emissions and emissions
standards for local air pollutants.

• Older data has been removed from the public
record, so that developing time series is difficult.

• The sparseness of activity data – for example,
annual mileage over the life of the vehicle or
vehicle occupancy and load factors necessitated
many assumptions. 

• Diesel use in the agriculture, construction and
mining sectors needs to be better understood in
order to make allocations of diesel use to sec-
tors for modelling and greenhouse gas invento-
ry purposes with any certainty.

This study suggested that better energy policy
and planning going forward requires stakeholders
to collaborate to improve the quantity, quality and
accessibility of energy and environment data.

Transport planning and planning for energy for
transport are particularly high on the national agen-

da, with congestion in cities increasing, public trans-
port networks expanding at great expense, and the
costs of energy imports rising. The data-rich picture
provided by this model is, therefore, a useful input
to many policy activities other than the projection of
energy demand. For example, extensions of this
type of model are particularly useful for rapid
assessment of the impacts on demand of disruptive
transport technologies, including battery electric
vehicles, hybrid electric vehicles and hydrogen fuel
cell vehicles. This has relevance to the large gaso-
line fuels sector in the country, which could be
severely affected by penetration of these technolo-
gies. Future work will aim to explore these impacts.

Note
1. Supplementary material can be found at [TO BE

INSERTED BY LAYOUT] 
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