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”If you cannot explain it simply, you do not understand it well enough.”

Albert Einstein



Abstract

Towards a triphasic Theory of Porous Media-based model for chloride-induced

corrosion in reinforced concrete

by Joanitta N Ndawula

This thesis is concerned with the initial development of a multiphase material model using the

Theory of Porous Media (TPM) for the penetration of intermediary rust product into reinforced

concrete subjected to chloride-induced corrosion. Research has shown that although the majority

of time-to-cracking service life models for reinforced concrete structures neglect the permeation of

rust into the cement paste adjacent to the reinforcement, it is this mechanism that is responsible

for discrepancies between experimental data and model results. The model presented may be used

to simulate the transport of water and gas through the capillary pores in concrete and the diffusion

of iron III chloride within the pore solution. Iron III chloride is a soluble chloride complex formed

as an intermediary product during the oxidation reaction at the anode of the corrosion cell. This

solute is transported in the pore solution from low oxygen conditions and is oxidized in oxygen-rich

conditions resulting in the precipitation of rust in the concrete pores. The Theory of Porous Media

has proven proficient for modelling the material behaviour of porous solid bodies saturated with one

or more fluids but has yet to be applied to chloride-induced reinforcement corrosion of reinforced

concrete. This work outlines the initial efforts of using TPM to model the rust transport process

coupled with the poro-elastic material response of reinforced concrete. The latter accounts for the

stress build-up due to rust precipitation and volume expansion. The chloride complex is described

by a concentration within the liquid phase and is therefore not assigned a unique volume fraction.

Precipitation of the rust is not included here as it will be added at a later stage in the development

of a more accurate reinforced concrete chloride induced corrosion model. It is intended that the

model thus developed may be adapted for other deterioration mechanisms in concrete.
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1. Introduction

1.1 Background

The availability, ease of use and effectiveness of Portland cement has made concrete the primary

choice of building material, especially in developing countries [4]. In current construction practice,

it is assumed that the mechanical properties of different types of concrete have been considerably

investigated and are well understood. However, the durability of concrete structures has not been

sufficiently addressed; having been assumed to be an inherent property of the concrete. Concerns

about durability arose when modern structures were witnessed to experience significant deteriora-

tion during their service lives [5].

An effort to understand and mitigate the mechanisms by which deterioration takes place has high-

lighted the knowledge gap in designing durable concrete structures. Deterioration typically occurs

as a result of the penetration of deleterious substances into the concrete [6]. Although there are

various forms of concrete degradation, the most significant is the corrosion of steel in reinforced

concrete [6, 7, 8].

Reinforcement corrosion is an electrochemical process that occurs either as carbon dioxide-induced

or chloride-induced corrosion depending on the aggressive agent [5]. Research shows that the latter

is the more aggressive of the two since it occurs at a higher rate, resulting in failure within a shorter

time after initiation [9].

The most severe exposure condition in Cape Town in the Western Cape province of South Africa

is considered to be the marine splash and spray zone [9]. Reinforced concrete structures in the

marine environment are most aggressively affected by chloride-induced corrosion [9]. Chlorides

in this environment are present as salts dissolved in sea water and mist. For chloride-induced

corrosion to occur, it is necessary for chloride ions to penetrate through the cover concrete to reach

the reinforcing steel surface. This transportation of fluids through the pores and cracks depends

1



1. Introduction 2

on the penetrability of the concrete in question [5]. The presence of oxygen and moisture at the

steel surface is additionally necessary for the initiation and propagation of reinforcement corrosion.

Cyclic wetting and drying in the marine splash and spray zone provides suitable conditions for

sustaining chloride-induced reinforcement corrosion.

The products of corrosion occupy a volume up to six times that of the intact steel. They are accom-

modated in the interfacial transition zone between the concrete and the steel [10]. The volumetric

increase results in loss of bond between the concrete and the steel and creates expansive tensile

stresses within the concrete [11]. This eventually leads to cover cracking, concrete delamination

and spalling. These phenomena compromise general safety and the repair and maintenance of

structures affected by reinforcement corrosion is significantly costly [9].

In order to address the problem of reinforced corrosion in concrete, it is necessary to combine

experimental studies, analytical solutions and numerical methods to predict the transportation of

deleterious species through the concrete and the accompanying stresses. The results may then be

used to more accurately predict the course of material degradation so that the available mitigation

measures such as cathodic protection may be used more effectively [12].

Service life models for reinforced concrete are limited by the various complications presented by the

corrosion process. These include the variation in the composition and density of the corrosion prod-

ucts, the non-uniform distribution around the steel reinforcing of said products and penetration of

the corrosion products into the pores of the concrete. Significant inconsistencies are often observed

between the modelled and the measured time-to-cracking [3, 13]. Val et al. [2] discerned these

differences to stem from not adequately accounting for the penetration of rust into the concrete

pore spaces next to the reinforcing steel. Due to the penetration of rust into the concrete pores, a

greater steel mass loss is required to induce expansive stresses at the steel-concrete interface. This

translates to a longer corrosion propagation period before cracking of the concrete cover occurs

[10].

Existing models that have attempted to include the penetration of iron III chloride typically assume

a uniform corrosion product with uniform distribution around the steel and uniform penetration

into the concrete pores at the steel surface. In some of these models, the penetration of corrosion

products into the concrete pores is addressed separately from the formation of corrosion induced

cracks. By considering these two phenomena separately, the influence of the penetration of corrosion

products into the concrete pores on the cracking of concrete due to reinforcement corrosion cannot

be determined. The models reviewed did not directly quantify the volume of corrosion products
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penetrating into the concrete pores or the depth of penetration. These parameters were rather

calculated from other variables in the model such as corrosion current density and capillary porosity.

Concrete is a composite, porous material with a solid skeleton made up of the hydrated cement paste

and various sized pores [4]. It typically contains micro cracks as well, resulting from shrinkage and

differential settlement stresses [14]. The pores and cracks provide channels through which fluids such

as air and water may be transported. The movement of fluids through the pore structure is governed

by different mechanisms such as diffusion and capillary suction depending on the conditions to which

the concrete is subjected to [5].

Multiphase modelling is used to model fluid flow in a solid body containing one or more fluids

[15, 16]. It was originally developed for application to soil mechanics as elaborated in de Boer [16]

but has been adapted for petroleum and chemical engineering, materials science and biomechanics

[17] due to advancements in mechanics of porous media.

The Theory of Porous Media (TPM) is a framework for multiphase modelling of porous bodies

[16, 18]. It is based on classical mixture theory restricted by volume fractions [16]. A biphasic

TPM growth model for application to Rheumatic Heart Disease was recently developed at the

University of Cape Town and implemented in the in-house software SESKA by Hopkins [19]. The

results of the study demonstrated the efficacy of TPM in modelling complex transport phenomena

in a porous body. Considering the developments in multiphase modelling of cementitious materials

[20, 21, 22], it is envisaged that TPM may be suitably used to model the processes involved in

chloride-induced corrosion of reinforced concrete structures.

1.2 Aim of the study

Attempts have previously been made to include the penetration of corrosion products in time-to-

cracking service life models for reinforced concrete subjected to corrosion [1, 2, 3] in an endeavour to

produce more accurate results. However no attempts have yet been made to model the mechanism

by which the penetration occurs. This may be attributed to a lack of experimental studies on the

subject and therefore a deficiency in the understanding of the precise mechanism. At present, it

is assumed that the corrosion products penetrate through the concrete capillary pores by diffusing

through the pore solution and precipitating in the capillary pores close to the steel surface [10].
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Multiphase porous media theory has recently been applied to deterioration processes in concrete

such as calcium leaching and alkali silica reaction [20, 23, 24]. These studies demonstrate the

efficacy of multiphase modelling for the intricate coupled phenomena occurring during concrete

deterioration. However, the theory has yet to be applied to corrosion in reinforced concrete.

Recognising the possible effectiveness of multiphase modelling for chloride-induced corrosion in

reinforced concrete, the aim of this study was to develop a numerical model based on the Theory

of Porous Media that may be used to simulate the penetration of corrosion products through the

concrete pore structure. The kinetics of corrosion were not explicitly addressed in the model as the

focus was deemed to be on the transport mechanisms involved in the corrosion process.

This is the first step in the development of a more accurate service life model based on the Theory

of Porous Media for chloride-induced corrosion of reinforced concrete.

1.3 Objectives of the study

The objective of this study was to derive the theoretical framework for a triphasic numerical model

using the Theory of Porous Media scheme to calculate the deformations resulting from the transport

of a fluid and a solute through the porous medium. This would be adapted to the penetration

of corrosion products through the reinforced concrete capillary pores by adjusting the material

properties in the model to those of concrete.

The main objective was broken down into smaller objectives deemed achievable in the limited

time-frame of this study and these are;

• To investigate the relationship between transport mechanisms in concrete, corrosion rate,

rust development and transport.

• To derive a triphasic framework based on the Theory of Porous Media for fluid transport

in a porous solid.

• To add a miscible component (called the solute ion) into the model that is transported

through the wetting fluid (called the solvent) by the process of diffusion.
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1.4 Scope and limitations

A theoretical framework for a fluid and ion transport model based on TPM is developed for a

partially saturated solid. The ion is included as a soluble constituent in the wetting fluid phase.

The model couples the transport process with the poro-elastic material response of the solid body.

Mass exchange between the constituents of the porous medium is not incorporated and therefore

the model does not take into account the precipitation of the soluble ion in the solid pores. It is

assumed there is a continuous external supply of the solute ions.

The sorption-desorption isotherm and associated parameters employed in this work result in a

mathematical ambiguity for negative capillary pressures. Negative capillary pressures may occur if

the wetting fluid is imbibed into a completely dry porous solid. Hence the application of the model

presented is limited to drainage and imbibition of a partially saturated solid body.

The model presented is generic and needs to be adapted for reinforced concrete by calibration and

validation using material properties and experimental data for concrete. Calibration and validation

in SESKA could not be executed in the limited time frame of this study, however these should be

done in order to determine the effectiveness of the model for simulating the penetration of corrosion

products into the concrete pores.

1.5 Layout of the document

Chapter 1 of the document provides a brief introduction and background information to the research

study conducted. Chapter 2 is a detailed literature review concerned with reinforcement corrosion,

the penetration of corrosion products into the concrete pore spaces and the modelling of these two

phenomena. Chapter 3 details the generic Theory of Porous Media framework which is adapted

in Chapter 4 for a three phase system with a solute in the liquid phase. The first attempts at

numerical implementation together with the results of the simulations are presented in Chapter 5.

Finally, Chapter 6 gives the conclusion to this document and details the work still to be done.



2. Literature review

This chapter presents the literature review conducted for this study. It gives an account of the

relationship between service life and durability and how these are affected by chloride-induced

corrosion. A further investigation was conducted on how reinforcement corrosion occurs and what

transport mechanisms in concrete are involved in the process. In exploring the effect of chloride-

induced corrosion on the service life of reinforced concrete structures, it was necessary to identify

and understand the material properties of corrosion products. The literature study then focused

on how the corrosion products lead to loss of service life, how this process may be modelled and

the shortcomings in existing models of this phenomenon.

2.1 Overview

This section gives a brief introduction to the concepts of service life and durability, mechanisms of

deterioration of reinforced concrete and corrosion of reinforcing steel in concrete.

2.1.1 Service life and durability of concrete

A qualitative definition of service life is given by Helland [25] as the duration over which a structure

or any of its components is used and maintained as intended, without the requirement for major

repairs. Ballim et al. [5] define durability of a concrete structural component as its capacity to

endure the exposure environment over its design life. A material designed for a specific environment

may not be durable in an alternative environment and therefore durability is a correlation between

the material and its service environment [5]. Service life design is employed for realising structural

concrete durability and is traditionally included in design standards.

It is estimated that up to 40% of construction budgets in developed countries are spent on the

repair, rehabilitation and maintenance of concrete structures [4, 26]. This comes at a significant

6
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Figure 2.1: Factors affecting durability [5].

socio-economic cost that has led to cognizance of the importance of durability design and life-cycle

versus initial costs of new establishments. It has also been discerned that use of durable materials

results in conservation of natural resources and is therefore advantageous for the environment [4].

Ballim et al. [5] classify factors affecting durability into factors that determine how the concrete

resists degradation and environmental factors that determine the severity of the conditions the

concrete structure is exposed to, as shown in Figure 2.1. Factors affecting how concrete resists

degradation are divided into intrinsic and extrinsic factors. Intrinsic factors include binder type

and water/binder ratio. Extrinsic factors include ambient temperature, construction quality and

curing. Environmental factors affecting concrete degradation include the presence of aggressive

agents such as chlorides and carbon dioxide [5].

2.1.2 Mechanisms of deterioration of reinforced concrete

Deterioration mechanisms of reinforced concrete are intricate phenomena spanning multiple length

scales and various fields of study [4]. These mechanisms generally involve the transportation of

fluids through the concrete pore structure [5]. The probability of occurrence of a specific type of

deterioration and the rate at which it progresses depends on the severity of the exposure conditions,
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the resistance of the concrete to these conditions and the fluid-transport attributes of the concrete

[5].

Almost all deterioration mechanisms of concrete require the action of water, whether present in

the exposure environment or within the concrete pores. Water enables dissolved salts to partake

in ion-exchange and addition reactions with concrete [4, 5].

Mehta and Monteiro [4] classify deterioration mechanisms as either physical or chemical processes.

The physical processes are further subdivided into ”surface wear” and ”cracking”. Surface wear

may occur as a result of abrasion, erosion and cavitation.

Reinforced concrete members may crack in high load intensity areas due to stresses from applied

load [5]. These micro-cracks are admissible in the normal service life of the structure and typically

do not cause concern. Cracking in concrete may also occur as a result of freezing of pore water,

fire and shrinkage-induced stresses as water is evaporated from the concrete surface. The presence

of cracks in concrete increases the rate at which deleterious substances penetrate into the concrete

[5].

Chemical deterioration processes may be generally classified into ion exchange, ion removal or ion

addition reactions [5]. Ion exchange reactions involve the action of acids on the alkaline cement

paste matrix resulting in consumption of the hydrated cement paste. Ion removal entails the

dissolution and leaching of the hydrated cement paste. The reaction of the hydrated cement paste

with deleterious substances to form expansive reaction products is an ion addition process. The

reaction products induce expansive stresses within the concrete and cause cracking of the concrete

[5].

The aforementioned deterioration mechanisms typically do not occur in isolation but tend to man-

ifest with and intensify other mechanisms.

2.1.3 Corrosion of reinforcing steel

Corrosion of reinforcing steel in concrete is a unique form of deterioration [5]. It is a major limiting

factor in the service life and durability of reinforced concrete structures. It occurs through the

mechanism of oxidation of iron from carbon steel to produce expansive oxides of the consumed

metal. The accumulation of these products at the steel-concrete interface exerts pressure on the

cover concrete, which eventually leads to debonding between the concrete and steel, concrete cover-

cracking and spalling.
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Reinforcement corrosion in concrete occurs as either carbonation-induced or as chloride-induced

corrosion [2, 4, 5]. Chloride-induced corrosion is the foremost concern as it occurs at a much higher

rate and results in pitting of the reinforcing steel [7, 9, 11]. Structures in the marine environment

and those exposed to de-icing salts are the most susceptible to reinforcement corrosion [9].

Carbonation-induced corrosion occurs when carbon dioxide is allowed to diffuse into concrete from

the atmosphere and reacts with products of the hydration of cement to form calcium carbonate

[27]. This results in the reduction of pH of the concrete matrix and hence the breakdown of

the passive oxide layer on the steel [28]. The loss of passivation of the reinforcing steel initiates

corrosion. Relative to chloride-induced corrosion, this type of corrosion has a lower reaction rate.

Carbonation will not occur if the concrete pores are completely saturated or completely dry. It

typically occurs at a relative moisture content between 50% and 70% [5].

Chloride-induced corrosion requires contact between the reinforcing steel and chloride ions. The

ingress of chloride ions into reinforced concrete depends on the penetrability of the concrete [5].

Concrete binds chloride ions to form a complex called Friedel’s salt ([Ca2Al(OH)6]Cl.2H2O) [29].

Free chlorides are chloride ions not bound in the concrete. A critical concentration of free chloride

ions at the steel level results in the loss of the passive oxide layer on the steel surface and corrosion

is initiated thereafter [5].

The focus of this work is on chloride-induced corrosion and therefore a detailed discussion on

carbonation-induced corrosion will not be entered into. Chloride-induced corrosion is elaborated in

Section 2.5.

2.2 Concrete micro-structure

Advancements in materials science have led to appreciation of the influence of the internal micro-

structural properties on the macro-structure of concrete [30, 31]. However, the high complexity of

this micro-structure makes it difficult to develop efficient and realistic models for the prediction

of concrete material behaviour. Understanding of the micro-structural properties of the individual

constituents of concrete and their interactions is important when attempting to develop structural

and material behavioural models [4].

The microstructure of concrete may be characterised by the hydrated cement paste, the pore

structure and the ITZ (Interfacial Transition Zone) [4, 32]. At the micro-structural level, the
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hydrated cement paste and ITZ are observed to be inhomogeneous both inherently and in relation

to each other. Each of these constituents generally contain varying quantities of solid phases, pore

spaces and micro-cracks. The micro-structural constituents of concrete vary with time, humidity

and temperature and therefore the micro-structure is not considered an intrinsic characteristic of

the concrete [4].

2.2.1 Hydrated cement paste (hcp)

When cement comes into contact with water, a chemical reaction occurs that results in the develop-

ment of the hydrated paste . The different components that make up the paste micro-structure are

variable in distribution, size and morphology. These variations significantly affect the mechanical

and physical properties of the concrete [4].

Particles of unhydrated cement may be found in almost all hcps as shown in Figure 2.2. Hy-

drated cement pastes commonly consist of Calcium-Silicate-Hydrate (CSH) gel, calcium hydroxide,

a hydrous calcium aluminium sulfate called ettringite and monosulfate interlaced with pore spaces.

The CSH gel is a product of Alite (Ca3SiO5) and Belite (Ca2SiO4) hydration in cement and varies

within the hcp. As the concrete ages, hydration continues resulting in new hydration products

filling up the pore spaces and making the hcp more dense [33].

Figure 2.2: A Scanning Electron Microscopy (SEM) image of the concrete microstructure [34].
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Figure 2.3: A schematic representation of the ITZ [4].

2.2.2 Interfacial Transition Zone (ITZ)

Concrete contains both fine and coarse aggregates. The bulk density and strength of the aggregate

provide the concrete with dimensional stability and affect its unit weight and elastic modulus [5].

Because these are primarily physical characteristics, it is deduced that the chemical characteristics

of the aggregate play a lesser role in the concrete except in the case of alkali-aggregate reactions. The

shape and size of the coarse aggregate indirectly affect the strength and permeability of concrete.

The higher the proportion of elongated and flat aggregate, the greater will be the tendency for

water to filtrate through the ITZ [4].

The micro-structure of concrete is known to vary in zones close to large aggregate from the bulk

paste as illustrated in Figure 2.3. The ITZ is formed as a result of the composite nature of

concrete between the aggregate and the hydrated cement paste. Hu [14] describes it as a packing

discontinuity at the aggregate particle surface. This zone may be up to 50 µm thick and has been

observed to have higher porosity and penetrability than the matrix. The porosity may be up to

30% in the region within 2 µm of the aggregate. This provides favourable paths for fluid transport

and significantly influences the mechanical behaviour of the concrete [5, 33].

Winslow and Cohen [35] found that when the ITZ reached a size of 20µm, percolation was initiated

as shown in Figure 2.4. This is because at a sufficient volume of aggregate within the concrete, the
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Figure 2.4: Percolation in concrete due to increasing size of ITZ [35].

ITZs begin to overlap creating an unhindered path for fluid transport. Percolation describes the

connectivity of the pore spaces and factors into transport mechanisms within the concrete.

Figure 2.5: An SEM image of the ITZ between steel and concrete [36].

In reinforced concrete, an ITZ exists between the steel and the concrete matrix as shown in Figure

2.5 [3, 36]. It has been described as having similar characteristics to the ITZ between aggregate

and the hcp [36]. The steel-concrete ITZ consists of capillary pores, exhibits significantly higher

porosity than the cement matrix and offers room for the deposition of corrosion products during

reinforcement corrosion [3]. This deposition phenomenon was observed (by comparing Figures 2.5

and 2.6), as the densification of the ITZ during accelerated corrosion experiments in which the ITZ

was examined under an Scanning Electron Microscope (SEM) by Yuan and Ji [36].
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Figure 2.6: An SEM image of the corrosion product layer between the steel and concrete [36].

The existence of an ITZ is more evident in younger concretes. This may be attributed to the absence

of cement particles in the regions immediately surrounding the aggregate in fresh concrete. It results

in a higher percentage of water-filled spaces close to the aggregates in younger as opposed to older

concrete. These spaces are later filled by calcium hydroxide or CSH upon continued hydration of

the cement paste [33].

2.2.3 Porosity of concrete

Hu [14] defines porosity as the ratio of pore volume to the initial paste volume. Four types of

pores in concrete have been identified namely: gel pores, capillary pores, macro pores resulting

from entrained air and macro pores resulting from insufficient compaction [14, 32]. The variation

in pore size from nanometres to millimetres is shown in Figure 2.7.

Figure 2.7: Types of pores present in the hydrated cement paste [4].

Concrete porosity depends on various factors, the most important of which are; the degree of

hydration of the concrete, particle size distribution of the aggregate and the water-binder ratio.
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The packing discontinuity of the ITZ as described in Section 2.2.2 also influences the porosity of

concrete [14].

Porosity significantly affects permeability of concrete and hence its strength and durability. Al-

though there is no direct correlation between porosity and permeability, it has previously been

established that as the cement hydration reaction proceeds, both capillary porosity and permeabil-

ity decrease [4].

2.3 Transport mechanisms in concrete

Durability of concrete has been ascertained to depend on the transport of fluids and dissolved ions

in the pore structure. Fluid and ion movement may be due to capillary suction, flow under pressure

or a concentration gradient. It is for this reason that degradation processes such as chemical attack,

leaching, chloride ingress or carbonation are influenced by the transport mechanisms of concrete.

These mechanisms include permeation, absorption, diffusion and migration [5].

The transport mechanisms mentioned in this section often cannot be treated singularly in a given

instance. In reality, these mechanisms may occur simultaneously within a given time or section of

the member being addressed. These mechanisms vary with the age of the concrete due to continuing

hydration of the cement paste or due to deterioration of the concrete. The variations affect the

porosity of the concrete and this should be taken into account when developing models of transport

mechanisms.

2.3.1 Permeation

This is the flow of a fluid through the pores of fully saturated concrete due to an externally applied

pressure. The capacity of a porous body to permeate fluids is termed permeability. Mehta and

Monteiro [4] define permeability as ”the rate of viscous flow of a fluid under pressure through the

pore structure”. The coefficient of permeability is a fluid transport characteristic and for steady

state flow is typically determined from Darcy’s Law according to

q = −κ
µ

(∇p− ρg) (2.1)
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where q is the flux , κ is the permeability, µ is the viscosity, ∇p is the pressure gradient, ρ is the

density of the fluid and g is the body force [37]. In porous media theory, the flux q is analogous to

the advective mass flux expressed as a seepage velocity for each of the fluids [16, 37, 38].

The permeability of the hcp varies significantly depending on the degree of hydration and on the

size, structure and connectivity of the pores, which are governed by the porosity. A small reduction

in the porosity typically corresponds to substantial divisions of the larger pores. This reduces the

size and continuity of the pores, hindering flow in the cement paste [4].

Research has shown that the coefficient of permeability for concrete is appreciably higher than that

of a comparable mortar. The increase in the coefficient of permeability is attributed to the inclusion

of large aggregate and is directly proportional to the size of aggregate used [4]. This phenomenon

may be explained by the higher permeability of the ITZ between the aggregate and the hcp as

previously explained.

2.3.2 Diffusion

The motion of species through a partially or fully saturated material due to a concentration gra-

dient is called diffusion. The rate of diffusion through concrete depends on temperature, moisture

content of concrete, and the species being diffused. Diffusion in concrete is influenced by: chemical

interactions with the cement hydration products; by the saturation conditions; by cracks and voids

in the concrete; and by electrochemical effects due to rebar corrosion [5].

Diffusion characteristics are vital in modelling deterioration of reinforced concrete structures in

marine environments. Fick’s first law of diffusion is typically used to model the diffusion of gases

through concrete pores and solute ions within the pore solution. It is given by

J = −Deff
dC

dx
(2.2)

where J is the mass transport rate ( g
m2s

), Deff is the effective diffusion coefficient (m
2

s ), dC
dx is the

concentration gradient ( g
m3

m

), C is the concentration of diffusing species in the fluid ( g
m3 ) and x is

the distance (m). The chemical reactions are accounted for by adding a chemical reaction reaction

term to the generic Fick’s Law for each species being diffused [39].



2. Literature review 16

Fick’s second law of diffusion used to model ionic diffusion is given by

∂C

∂t
= D

∂2C

∂x2
(2.3)

where D is the diffusion coefficient (m
2

s ), t is the time (s).

2.3.3 Capillary absorption

Absorption is defined as the movement of a fluid through the pore spaces of an unsaturated material

due to capillary suction. It is influenced by the arrangement of pores and the degree of saturation

of the material. The rate of movement of a wetting front due to absorption is called Sorptivity [5].

Pérez et al. [40] defines capillary sorption and desorption as the flow of fluids from saturated to

partially saturated regions. It occurs as a result of adhesive forces between water molecules and the

walls of the concrete pores [41]. The fluids may carry along dissolved species that are described by

their concentrations. Capillary absorption may be considered the prevailing transport mechanism

in the vicinity of an unsaturated concrete surface since diffusion occurs at a much slower rate [42].

In partially saturated concrete, single phase flow resulting from capillary absorption may be given

by an extension of the Darcy equation expressed as

q = −κ(θ) ∇Ψ(θ), (2.4)

where q is the flow velocity, κ is the hydraulic conductivity, Ψ is the capillary potential and θ is

the reduced water content defined as

θ =
Θ−Θi

Θs −Θi
. (2.5)

In Equation (2.5), Θ is the volume fraction of water in the medium, Θi is the initial liquid volume

fraction and Θs is the saturated liquid volume fraction so that θ is initially zero and is one at

maximum saturation [43].

2.3.4 Transport mechanisms in cracked concrete

Cracked concrete exhibits different properties to that of uncracked concrete. In cracked concrete, the

transport mechanisms are dependent on a correlation between the crack network and the concrete
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matrix. Crack width, origin, frequency and degree of connectivity all play a vital role in transport

mechanisms in cracked concrete [9]. Both micro and macro cracks influence these mechanisms

differently. Data based on intact concrete cannot be applied directly to cracked concrete. In some

cases of cracked concrete, the properties of the cracks in relation to the transport mechanisms may

become more important than the properties of the concrete itself [5]. For simplicity, this work

assumes the concrete to be intact so that the influence of cracks on fluid transport through the

concrete pores may be disregarded.

2.4 Moisture state

The main transport mechanisms used in this work are described in Section 2.3. These processes are

significantly influenced by the degree of saturation of concrete with water. It is therefore essential

to adequately account for the varying moisture contents experienced by real structures in their

service life.

2.4.1 Capillary pressure and vapour pressure

Capillary pressure is the pressure difference between two immiscible fluid phases resident in the

same pore space. It is caused by inter-facial tensile forces between the two fluids which must be

exceeded for either fluid to flow [44]. There exists a relationship between fluid saturation and

capillary pressure and this is elaborated in Section 2.4.2 [37].

Vapour pressure is the equilibrium pressure applied by a vapour on its liquid or solid form at a

specified temperature in a closed system [45]. It is a measure of the tendency for molecules to

break away from their more condensed form and therefore is related to the rate of evaporation of

the liquid and condensation of the gas.

Partial saturation of the porous medium is defined as the presence of more than one fluid phase

within the same pore space [22]. The moisture state variable chosen for the partially saturated

porous medium needs to show acceptable numerical performance upon computation [22].

The established correlation between pressures and stress makes both vapour pressure and capillary

pressure well-suited for the stress-state analysis of partially saturated reinforce concrete. The use of

vapour pressure as the moisture state variable has the advantage of being valid at all temperatures,

however it loses significance as a physical variable in fully saturated conditions [20] . On the other
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hand, capillary pressure is only valid at temperatures below the critical point of water and above

the solid saturation point [20, 37]. The solid saturation point is the degree of saturation below

which the liquid exists only as adsorbed water and above which the liquid phase exists both as

adsorbed and capillary water [37]. Capillary pressure was chosen for this work. It was shown by

Gawin et al. [20] to be equal to a thermodynamic water potential so that it could satisfactorily be

used as the moisture state variable.

2.4.2 Sorption-desorption isotherm

The sorption-desorption isotherm graphically expresses capillary sorption and desorption phenom-

ena in concrete [37]. It defines the relationship between saturation with the liquid, herein denoted

as sL, and the capillary pressure denoted as pC . The relationship expressed by the isotherm is used

to reduce the number of unknowns in the equation system for solution of the numerical model in

this study. A sorption-desorption isotherm is characteristic of the micro-structure of the porous

medium which in the case of concrete, varies with continued hydration of the cement paste [22].

The liquid saturation is the ratio of the liquid phase volume to the total pore volume in a differential

volume element of the material. It may be evaluated from the capillary pressure using the most

common sorption-desorption isotherm known as the van Genuchten [46] model according to the

equation

sL = [1 + (αpC)j ]−h (2.6)

with j and h coupled according to the equation

h = 1− 1

j
(2.7)

where α and j are material constants [38]. The saturation degree is then used to determine the

relative permeability which will be discussed in Section 2.4.3.

Typical capillary pressure behaviour in porous media is shown in Figure 2.8 and is categorized into

drainage and imbibition. Drainage refers to a decrease in liquid saturation and imbibition refers to

an increase in liquid saturation.
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Figure 2.8: Primary drainage and imbibition of a partially saturated system [47].

2.4.3 Relative permeability

In the determination of the fluid velocities in partially saturated porous media using Darcy’s Law,

the Darcy coefficient κ in Equation (2.1), is expressed as the product of the absolute permeability

(intrinsic of the porous medium) and the relative permeability of the fluid phase. The relative

permeability is a dimensionless parameter that varies from zero to one and is a function of the

degree of saturation [37, 48].

Various authors have developed several relative permeability functions. Lewis and Schrefler [37]

made use of the relationship proposed by Brooks and Corey [49] in which the relative permeabilities

of the liquid phase, krL and the gas phase krG were respectively given as

krL = S
(2+3λ)
λ

e (2.8)

krG = (1− Se)2(1− S
(2+3λ)
λ

e ), (2.9)

where

Se =
(sL − sLC)

(1− sLC)

is the effective saturation, sLC is the irreducible saturation and λ is the pore size distribution index.
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Gawin et al. [50] made use of the relative gas permeability given by the equation

krG = 1−
(
sL

scr

)Ag
, (2.10)

where scr is the critical degree of saturation beyond which there is no gas flow and Ag is a constant

with the range from 1 to 3. The same study presented two different relative permeability functions

for the liquid phase. The first function was given as

krL =

(
sL − sir
1− sir

)Al
(2.11)

where sir similar to sLC , is the irreducible saturation and Al is a constant with the range from 1

to 3. The second function was given as

krL =

[
1 +

(
1−RH

0.25

)Bl]−1
(sL)Al (2.12)

where RH is the relative humidity and Bl is a constant either equal to 6 or 16. Equation (2.12) has

the advantage over Equation (2.11) of having better numerical properties since it does not make use

of the irreducible saturation which has produced theoretical and numerical difficulties in previous

works [50].

The relative permeability functions used in this work were obtained from Monlouis-Bonnaire et al.

[48]. These were based on van Genuchten [46] relations, with the empirical parameters calibrated

for cement-based materials.

The relative permeability of the liquid phase was given by the equation

krL = (sL)p
[
1−

(
1− (sL)

1
m

)m]2
(2.13)

and for the gas phase as

krG = (1− sL)p
[
1− (sL)

1
m

]2m
(2.14)

where m was determined to be 0.56, and p was determined to be 5.5.
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2.4.4 Moisture potential function

The moisture potential function of a cementitious porous medium is used to distinguish the range

in which the sorption-desorption isotherm is measurable. This depends on whether the saturation

degree falls within or outside the hygroscopic moisture range [51].

The hygroscopic moisture range shown in Figure 2.9 was defined by Gawin et al. [50] to be the

degree of saturation less than or equal to the solid saturation point. In this range, the liquid phase

exists as only adsorbed water and therefore does not contribute a liquid pressure. Beyond the solid

saturation point is the capillary region in which both bound and capillary water are present. Only

capillary water in the capillary region has mobility.

Figure 2.9: Hygroscopic and capillary moisture ranges for concrete [52, 53].

At capillary saturation, the capillary pores are said to be saturated with the wetting fluid. However

above capillary saturation, the entrained air voids are still not filled with liquid. This results in the

difference observed between complete and capillary saturation known as the over-capillary moisture

range. In this range there is no moisture gradient, hence very little to no absorption of the liquid

into the entrained air voids occurs [53].

The sorption-desorption isotherm described previously is only valid above the hygroscopic moisture

range and therefore capillary pressure loses its significance for saturations below the solid saturation
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point. This limitation makes it necessary to make use of the water potential to describe the moisture

state of the medium below the solid saturation point [20, 51].

The water potential ΨC is the potential energy of water in a porous medium relative to pure water

in the fully saturated condition known as the reference state [54]. It expresses the tendency of

water to advance from one region to another as a result of gravity, pressure or capillary suction.

For temperatures below the critical temperature of water as employed in this study, the water

potential is given by the equation

ΨC =
RT

Mw
ln

(
pGL

pGLS

)
, (2.15)

where pGL is the partial pressure of the water vapour, pGLS is the saturation pressure of the water

vapour, R is the universal gas constant, T is the temperature and Mw is the molar mass of water

[20, 55]. For capillary water in equilibrium with water vapour above a meniscus, the Kelvin equation

in the form

ln

(
pGL

pGLS

)
= −p

C

ρL
Mw

RT
(2.16)

is substituted into Equation (2.15) to obtain the following relationship between capillary pressure

and water potential

pC = −ΨρL. (2.17)

Gawin et al. [20] used Equation (2.17) to justify the use of capillary pressure as a moisture state

variable in the simulation of their multiphase model for saturation degrees outside the hygroscopic

moisture range. They cautioned that the results obtained in this case could not be interpreted to

be pressure but rather a thermodynamic potential for the adsorbed water.

2.5 Chloride-induced reinforcing steel corrosion

Montemor et al. [29] defines corrosion as an electro-chemical process in which chemical reactions

generate electrical energy. These reactions occur at anodic and cathodic sites created as a result

of chemical or physical variations on the steel surface [56]. The variations are typically borne of

the steel manufacturing process or by varying oxygen concentrations at the steel surface [5]. Before
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corrosion initiation, the anodic reaction is given by the equation

Fe→ Fe2+ + 2e− (2.18)

and the balancing cathodic reaction by

1

2
O2 +H2O + 2e− → 2OH−. (2.19)

Although reinforcing steel is naturally subject to corrosion in the atmosphere, the high alkalinity

of the cement matrix in which the steel is embedded protects it from corroding [9]. The high pH

coupled with the products of both the cathodic and anodic reactions results in the formation of a

thin layer of oxide or hydroxide that passivates the steel reinforcing [5, 27].

Corrosion agents do not have a significant effect on the concrete matrix alone. They attack the

passive layer of oxide on the steel and actuate corrosion as elaborated in Section 2.5.1 [5]. The

concrete cover protects the steel by preventing the ingress of corrosion agents that initiate and

sustain corrosion [9]. Apart from chlorides in the marine environment and de-icing salts, chloride

ions are introduced into concrete during mixing as a contaminant or in an admixture.

When chloride ingress occurs in a concrete already affected by carbonation, the dual action of the

two phenomena increases the rate of deterioration of the reinforcing steel. The carbonation reaction

lowers the pH of the concrete matrix thereby allowing the chlorides bound by the products of cement

hydration to be released. The ensuing increase in the amount of free chloride ions available to the

steel surface results in accelerated corrosion of the reinforcement [5].

Cracking of the cover concrete occurs when the stresses due to rust build-up at the steel-concrete

interface exceed the tensile strength of concrete. The cracks then begin to migrate and are halted

in regions where the concrete is able to sustain these stresses [26]. Cracks in reinforced concrete

are known to increase the penetrability of the concrete and hence significantly increase the rate of

steel corrosion. The degree to which the corrosion rate is affected depends on the crack properties

such as crack width, frequency and density [9].

Liu and Weyers [13] found that a proportion of the corrosion products fill the porous zone of hy-

drated cement paste adjacent to the steel. This means that only part of the rust formed during

corrosion contributes to the expansive stresses that result in cover cracking. Therefore when devel-

oping time-to-cracking models, it is vital that this behaviour is accounted for in order to make an

accurate determination of service life.
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2.5.1 Depassivation of steel

Revie and Uhlig [56] define passivation as the state in which a metal known to thermodynamically

react in a certain environment resists significant corrosion.

Under normal conditions, the high alkalinity of concrete provides protection to the steel from corro-

sion by passivation. If a concrete has low water/cement ratio, is well compacted and appropriately

cured, it’s low permeability should minimize the ingress of corrosion-inducing agents. Concrete is

also known to have low electric conductivity which reduces the flow of electric current from the

anode to the cathode, thereby reducing the corrosion rate [57].

All these properties mean that in an ideal situation where the reinforced concrete is well designed,

cast and maintained, reinforcement corrosion should not be a major cause of deterioration of the

structure. However, this is rarely the case in reality [57].

Depassivation may occur due to chlorides present in the concrete at casting. Alternatively it may

occur over a significant period of time after construction due to ingress of chlorides or diffusion of

carbon dioxide in air into concrete, causing the conversion of alkaline Ca(OH)2 to the less alkaline

CaCO3 [56].

2.5.2 The corrosion cell

Reinforcement corrosion was previously established to be an electrochemical process [29]. The

coupled anodic and cathodic reactions characteristic of the process take place on the surface of the

steel which also acts as the electrical link between the two. The pore water in the concrete acts

as the electrolyte and the whole system creates what is known as a corrosion cell [57]. Current

flows between the anode and cathode of the cell due to the potential difference between the two

electrodes [9].

Corrosion cannot occur if the steel is passivated as described in Section 2.5.1; if there is no oxygen

available at the cathode or if the concrete is completely dry [26].
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The half cell reactions

The anodic and cathodic reactions are collectively known as the half cell reactions. These are

reduction-oxidation reactions with the oxidation reaction taking place at the anode and the re-

duction process taking place at the cathode as shown in Figure 2.10. At the anode, iron (Fe) is

dissolved into solution while at the cathode oxygen (O2) is reduced to form hydroxyl ions (OH−)

[57, 56].

Figure 2.10: Corrosion of reinforcement steel bars in concrete [4].

The oxidation reaction of iron at the anode is given in Equation (2.18). The Fe2+ produced

continues to react with hydroxyl ions to produce the final corrosion products which will collectively

be referred to as rust. These reactions depend on the pH of the electrolyte (pore water) and the

concentration of the aggressive ions and are given by the equations [12]

Fe2+ + 2OH− → Fe(OH)2 (2.20)

4Fe(OH)2 + 2H2O +O2 → 4Fe(OH)3 (2.21)

2Fe(OH)3 → 2H2O + Fe2O3 ·H20. (2.22)

Chloride ions are not consumed in the production of rust but act as catalysts according to the

reversible reaction [9]

2Fe2+ + 6Cl− ↔ 2FeCl−3 + 4e− (2.23)

2FeCl−3 + 4OH− ↔ 2Fe(OH)2 + 6Cl−. (2.24)
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This reaction occurs at the anode and results in chloride ions always being available to sustain

corrosion. The reactions at the cathode depend on the concentration of oxygen and on the pH at

the steel surface.

2.5.3 Rate of corrosion

Otieno et al. [58] list the principal aspects to take into consideration when developing a corrosion

rate prediction model. These aspects are: (1) Corrosion rate varies with the age of the structure and

hence is time-variant; (2) Cover cracking significantly influences the corrosion rate; (3) Significant

differences have been observed in the measurement of corrosion rate using different instruments

and/or techniques under identical conditions; (4) Because most corrosion rate models are developed

using accelerated corrosion experimental results, validation of the models is vital in order to ensure

the results are representative of natural corrosion; (5) Due to the variability of the corrosion rate,

the variability of the input parameters that affect corrosion rate should be analysed beforehand.

Corrosion rate depends on the rate at which iron is dissolved at the anode, the availability of

water and oxygen at the cathode and the rate at which hydroxyl ions are transported through the

electrolyte. The dissolution of iron at the anode is time-dependent as the thickness of the corrosion

layer increases with time. This increase in thickness reduces the rate at which aggressive ions diffuse

to reach the steel surface and hence reduce the corrosion rate [26].

Corrosion rate is also significantly affected by the pore structure of the concrete matrix and its

degree of saturation. In experimental studies, corrosion rates have been observed to be very low

below 50% relative humidity and non-existent below 35% relative humidity. Corrosion rate increases

rapidly between 50% and 70% and stabilizes between 70% and 90% before decreasing towards 100%

relative humidity [26].

2.5.4 Products of reinforcement corrosion

Reinforcement corrosion products vary significantly depending on the prevailing conditions such

as the pH of the pore solution, oxygen availability and moisture content. A general formula for

these products may be written as Fe(OH)2n.Fe(OH)3p.H2O [13]. The corrosion layer typically

consists of a complex mixture of iron oxy-hydroxides namely Goethite (α − FeOOH), Akageneite

(β−FeOOH), Lepidocrocite (γ−FeOOH), Maghemite (γ−Fe2O3) and Magnetite (Fe3O4). The
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different products have differing densities and volume expansions as shown in Figure 2.11, which

create expansive stresses at the steel-concrete interface [26].

Figure 2.11: Relative volume ratios between Iron and the products of corrosion. [13].

Although existing models tend to model the corrosion product as uniformly distributed around the

steel bar, it has generally been observed that pitting due to chloride-induced corrosion results in a

non-uniform distribution of the corrosion product [3, 36, 59]. In this case, rust tends to accumulate

on the side of the rebar with the least cover resulting in the geometry shown in Figure 2.12.

Figure 2.12: Rust distribution in pitting corrosion. [59].

2.5.5 Movement of rust in concrete

A theory accounting for the movement of rust into the concrete capillary pores was suggested by

Zhao et al. [10]. In their study, it was found that the formation of the corrosion layer and the

movement of rust into the porous concrete occur simultaneously after corrosion has been initiated.



2. Literature review 28

Despite the apparent insolubility of the final corrosion products, the process of corrosion involves

the formation of unstable chloride complexes with iron as shown in Equation (2.23).

The iron-chloride complexes are soluble species that can dissolve in the concrete pore solution and

subsequently diffuse through the cement paste matrix away from the corroding steel surface where

there are low oxygen concentrations. When the complexes come into contact with hydroxyl ions in

the concrete pores, they are oxidized to form insoluble iron hydroxides [10].

As hydroxyl ions are readily available close to the steel surface during corrosion, the soluble com-

plexes do not have to migrate far before they are oxidized. This means that the concrete pores

in the ITZ around the rebar are rapidly filled with rust, making the depth of penetration of the

corrosion product quite small as observed by Michel et al. [3].

2.6 Review of rust development and transport models

Various researchers have identified the need to include the penetration of corrosion products into

the concrete pores in corrosion initiation and corrosion propagation models [1, 2, 3]. Not all the

models have been discussed in this section. The models presented have endeavoured to include

the penetration of corrosion products into the concrete pores and micro-cracks, how this process

affects corrosion-induced cracking and to determine the size of the corrosion accommodating region.

Information about the quantity of corrosion products penetrating into the concrete pores and the

size of the CAR are important parameters in developing more accurate time-to-cracking service life

models for reinforced concrete structures.

2.6.1 Toongoenthong and Maekawa [1]

Toongoenthong and Maekawa [1] produced a two-phase mechanical model to simulate corrosion-

induced cracking with penetration of corrosion products into the corrosion-induced cracks. The

corrosion product and intact steel were represented as one unified phase and the surrounding

concrete as the other phase. A uniform corrosion product was assumed to be magnetite (Fe304)

and this was assumed to be uniformly distributed around the intact steel. These assumptions were

made based on observations of the corrosion products in the accelerated corrosion tests used to

verify the model [1].
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Non-linear finite element analysis was used in the two dimensional thick-walled cylinder cracking

model to estimate the critical mass of steel loss resulting in concrete cover cracking [1]. The

mechanism for migration of the corrosion products into the corrosion-induced cracks was attributed

to the corrosion product existing as a gel with liquid properties. The ability of the corrosion products

to migrate into the corrosion-induced cracks was termed buffer capacity (Qcr) and was calculated

using the equation

Qcr =

∮
Domain

(u · n) ds, (2.25)

where u is the displacement vector and n is the unit vector normal to the boundary surface of the

domain in the finite element analysis [1]. Subsequently, the volume loss per unit length of steel

resulting in expansive stresses at the steel-concrete interface Veffective was calculated as

Veffective = Vloss −Qcr, (2.26)

where Vloss is the total volume of steel lost per unit length.

Initially, the existence of a buffer capacity was an assumption made due to discrepancies between

simulated and experimental results in previous research. The authors performed an experiment to

verify the migration of the corrosion products into the corrosion-induced cracks before the cracks

migrated to the concrete surface. Figure 2.13 shows a specimen from the aforementioned experiment

where a corrosion product front is observed to penetrate into the concrete.

Analyses to determine the critical mass loss with and without the inclusion of buffer capacity were

performed to justify its inclusion in the model. The results of the numerical simulations including

the buffer capacity were consistent with the experimental data used for the verification [1].

The inclusion of creep deformations in the determination of the critical steel mass loss was found

to be vital especially for reinforced concrete members with a high cover depth to reinforcement

diameter ratio and those subjected to long term corrosion. Neglecting to include creep effects

resulted in a lesser critical steel mass loss compared to the experimental data. Creep effects were

accounted for by using a creep coefficient to effectively reduce the elastic stiffness of the concrete

surrounding the steel. This increased the critical steel mass loss before cover cracking, resulting in

good agreement with experimental results [1].

Val et al. [2] pointed out that there was no consideration for the penetration of corrosion products

into the concrete pore spaces in this model and that Toongoenthong and Maekawa [1] did not make
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Figure 2.13: Migration of the corrosion products into the concrete during experiments performed
by Toongoenthong and Maekawa [1].

use of experimental data to study penetration of corrosion products into the concrete cracks during

the crack propagation phase.

One of the major findings of this study was that the penetration of the corrosion gel into the

corrosion-induced cracks was insignificant for RC specimens with low cover depth to reinforcement

diameter ratios. Upon review of these parameters, it was noted that these specimens consistently

had cover depths below 50 mm. Such low cover depths result in an increased corrosion rate as the

corrosion agents do not have to penetrate through a thick cover. An increased corrosion rate results

in a shorter time to cover cracking. In specimens with larger cover depths and with longer times to

surface cracking, the penetration of the corrosion gel into the cracks was found to be substantial.

This finding corresponds to the finding of Michel et al. [3] that the quantity of corrosion products

penetrating into the concrete is directly proportional to the time required for cover cracking.

2.6.2 Val et al. [2]

Val et al. [2] aimed to estimate the amount of corrosion products penetrating into the concrete

pores and micro-cracks and to determine the thickness of the porous zone of concrete next to the

reinforcing steel. These parameters were required in order to determine what proportion of the total

corrosion products formed contributed to the expansive stresses at the steel-concrete interface.
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A non-linear finite element analysis scheme was implemented in the finite element software ABAQUS

to investigate crack initiation and propagation caused by the expansive corrosion products, initially

with no account for the penetration of the corrosion products [2]. Previously, the quantity of corro-

sion products penetrating into the concrete pores and micro-cracks had not been directly measured

experimentally but had been estimated by fitting experimental results to those obtained from nu-

merical models. For this reason, these experimental results could not be used to validate this part

of the model presented by Val et al. [2].

The concrete cracking model without penetration of corrosion products was validated using the

results obtained by Williamson and Clark [60] in which pressure was applied to holes inside con-

crete to induce cracking in the concrete. The results obtained showed good correlation with the

experimental results when the diameter of the holes was 8mm but showed significant discrepancies

for 16mm diameter holes.

The corrosion propagation part of the model could not be validated quantitatively without account-

ing for the penetration of corrosion products into the concrete pore spaces and micro-cracks. To

validate the model qualitatively, accelerated corrosion tests were conducted using the impressed

current method.

The depth of penetration of the corrosion products (pcorr) at time t for cases of constant corrosion

rate was calculated using Faraday’s law of electrolysis as

pcorr = 0.0116icorr t (2.27)

where icorr is the corrosion current density. The corrosion penetration was subsequently used to

calculate the free expansion of the rebar radius due to corrosion (δ) from an experimental result

using the equation

δ =
√
r2 + (αv − 1)(2rpcorr − p2corr)− r (2.28)

where r is the radius of the rebar and αv is the volumetric expansion ratio of the corrosion products.

The free increase in the radius (δ) of the reinforcing steel due to expansion of the corrosion product

from finite element analysis was calculated analogous to thermal expansion using the equation

δ = αT ∆Tr, (2.29)
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where αT is the coefficient of thermal expansion, ∆T is the temperature increase and r is the radius

of the reinforcing steel [2]. The choice of αT and ∆T was found to be arbitrary since the material

model used was rate independent.

The results from the modelling efforts of Val et al. [2] showed a higher quantity of corrosion products

penetrating into the concrete pores than previously published research. Crack impregnation was

found to be a gradual process with cracks in larger concrete cover taking longer to fill.

The study could not establish a relationship between the size of the corrosion accommodating region

and the water/binder ratio. Because water/binder ratio affects the porosity of the concrete, it was

assumed that the size of the CAR would also depend on the water/binder ratio. However, a direct

proportionality was identified between the size of the CAR and the time to crack initiation whereby

a longer time to cracking resulted in a larger quantity of rust penetration. Unlike Toongoenthong

and Maekawa [1], Val et al. [2] found that inclusion of creep effects related to their accelerated

corrosion tests did not influence the size of the CAR.

The penetration of the corrosion products was confirmed to be the cause of discrepancies between

simulated and experimental results since the tests conducted showed that the discrepancies were

not a result of the constitutive modelling of concrete. This finding highlighted the importance of

knowing the amount of corrosion products penetrating into the concrete pores in crack propagation

models.

2.6.3 Michel et al. [3]

Michel et al. [3] performed experimental studies on the effect of the corrosion current density and

water/binder ratio on the initiation and propagation of corrosion-induced cracks, and on the pen-

etration of corrosion products into the corrosion accommodation region (CAR). The experimental

set up employed for X-ray attenuation and digital image correlation (DIC) measurements of the

accelerated corrosion test is presented in Figure 2.14. DIC measurements were used to determine

the deformations between the steel and concrete and X-ray attenuation measurements were used

to obtain information on the penetration of the corrosion products [3].

The results from the X-ray attenuation measurements for all the specimens tested showed good

correlation with the total amount of corrosion products calculated using Faraday’s law. They also

indicated that the concentration of the corrosion products and the size of the CAR increased with

time [3].
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Figure 2.14: Experimental set-up for accelerated corrosion testing using the impressed current
method by Michel et al. [3].

Further result analysis showed that the maximum size of the CAR was not dependent on the

water/binder ratio or the corrosion current density. The lack of influence of the water/binder ratio

on the maximum penetration depth was presumed to be due to the discontinuity of the capillary

pore network at water/binder ratios less than 0.5 which hinders the movement of the corrosion

products. The authors speculated that water/binder ratios greater than 0.6 might influence the

maximum size of the CAR [3].

Subsequently Michel et al. [3] developed a combined electrochemical, transport and mechanical

numerical model for the simulation of corrosion-induced deformations and cracking. Similarly to

Toongoenthong and Maekawa [1], they assumed a uniform corrosion product namely haematite

(Fe2O3) to be uniformly distributed around the rebar length and perimeter. The assumption was

made to allow the use of two dimensional plain strain theory and was later confirmed using X-ray

Diffraction and Scanning Electron Microscopy of the corrosion products from the experiments.

Figure 2.15: Expansion of corrosion accommodation region presented by Michel et al. [3].
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Figure 2.15 is an illustration of the penetration of corrosion products into the concrete pores. In

the figure, CAR0 is the initial corrosion accommodating region made up of capillary pores which

fills up with corrosion products before expansive stresses are induced at the steel-concrete interface.

When the CAR0 is completely filled with corrosion products, micro-cracks begin to appear. The

CAR continues to increase until it reaches CARmax at which point no more corrosion products can

be accommodated in the capillary pores and increased tensile stresses produce macro-cracks in the

concrete cover [3].

The volume of the CAR (VCAR) was calculated using the equation

VCAR = φ Vcm (2.30)

where φ is the capillary porosity of the cement matrix and

Vcm = π lA((r + CAR)2 − r2) (2.31)

is the volume of the matrix accessible to the corrosion products dependent on the size of the CAR.

lA is the length of the anode and r is the radius of the original steel bar. The increase from CAR0

to CARmax was obtained from the equation

CAR = CAR0 + (CARmax − CAR0)κ (2.32)

where κ is a dimensionless coefficient accounting for the change in the connectivity of the capillary

pores of the CAR and varies from 0 to 1. The penetration of the corrosion products into VCAR was

described by the parameter λCAR according to

λCAR =


(

Vcp
VCAR

)n
, if Vcp < VCAR

1, if Vcp ≥ VCAR
(2.33)

where n is a non-physical fitting parameter and Vcp is the volume of expanded corrosion products.

Similarly to Val et al. [2], the volumetric expansion of the corrosion products was modelled analogous

to thermal loading at the corroding section. However the coefficient of thermal expansion α from

Equation (2.29) in Michel et al. [3]’s model was assumed constant and was derived to be a third of

the volume expansion coefficient of the corrosion product. An adjusted incremental temperature

∆TCAR was used to include the influence of the CAR on the deformations resulting from corrosion
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and was given by

∆TCAR = λCAR∆T. (2.34)

where ∆T is the incremental temperature as described in Equation (2.29).

The numerical model was implemented in a commercial FEM software and was validated twice; once

using the aforementioned experimental results and once using the experimental results of Vu et al.

[61]. The simulated results showed good correlation with the experiments for corrosion-induced

crack initiation and propagation. However whereas the experiments had revealed non-uniform

penetration of the corrosion products, the model produced uniform penetration of the corrosion

product into the CAR. The discrepancy led to over or under estimation of the corrosion-induced

deformations of the steel-concrete interface at some locations around the rebar [3]. This study found

the size of the CAR to be independent of the water/binder ratio and corrosion current density hence

confirming the observations of Val et al. [2].

2.6.4 Discussion

From the results of the studies, it is concluded that the corrosion products penetrate into both

the concrete pores and the micro-cracks at the steel-concrete interface. The corrosion products

fill the corrosion-induced cracks gradually after they are formed. Cracking in the cover concrete

occurs before the maximum size of the CAR is attained. Although Val et al. [2] found that the

CAR increases with increased time-to-cracking of the concrete surface, the size of the CAR was

established to be independent of the corrosion current density and the water/binder ratio and

hence the porosity of concrete. This calls into question the use of Faraday’s law which makes use

of corrosion current density and the use of capillary porosity in calculating the volume of corrosion

products and the CAR in Equations (2.27) and (2.30).

The three models presented all couple the penetration of the corrosion product with a cracking

model of corrosion initiation and propagation. In this work, the penetration of corrosion products is

treated in isolation from cracking due to corrosion-induced stresses. This simplification is justifiable

at this preliminary stage of the model’s development as the complete development of the model

is beyond the scope of this work. For the same reason the assumption of one iron-chloro complex

(FeCl−3 ) is made, analogous to the assumption of a uniform singular corrosion product in all the

models.
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2.7 The Theory of Porous Media (TPM) and rust transport

Porous media theory is a branch of continuum mechanics that was initially developed for application

to soil mechanics. This subject has however advanced to such an extent that it is now applied to

various other problems including the modelling of biological tissue [19], cementitious materials [22]

and paper processing [62].

The porous nature of the concrete matrix was previously described in Section 2.2. Since the concrete

pore spaces are typically saturated with one or more fluids, the whole system may be defined as a

multiphasic porous medium as shown in Figure 2.16.

Figure 2.16: Schematic of concrete saturated with water and air [22].

The main features of porous media are stipulated in Pesavento et al. [22] as: (1) Each of the phases

in the multiphase system may comprise multiple substances; (2) Interactions, mass exchanges and

momentum exchanges exist between the various phases; (3) There is mass transport of the fluid

constituents unless hygral equilibrium is assumed; (4) The macroscopic behaviour of the porous

medium is directly linked to the micro-scale physics of the solid body.

2.7.1 Previous application of TPM to concrete degradation

Existing models of concrete based on porous media theory typically address heat, mass, moisture

and solute transport coupled with the mechanical response of the material. The models presented in

this section follow a similar procedure in which balance equations are derived from the continuity

equation [15]. The balance equations typical of all multiphase models are the balance of mass,
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the balance of linear momentum, the balance of angular momentum and the balance of energy;

elaborated in Chapter 3. These equations are written at the micro-scale and are adapted for each

of the constituents of the porous medium. A volume averaging technique is used to translate the

equations from the microscale to the macroscale [22].

The constitutive equations relevant to the type of model being developed are thereafter derived

by evaluating the entropy inequality in order to ensure the second law of thermodynamics is not

violated. The balance equations together with the constitutive equations yield a solvable system.

For numerical solution the resulting equation system is discretized in space and time before being

implemented in finite element analysis software. This procedure was followed in the development

of the numerical model presented in this study.

In consideration of the fact that all the models discussed in this section follow the general procedure

outlined above, only their distinguishing characteristics are mentioned here.

Pesavento et al. [22] reviewed the application of porous media theory to modelling of deterioration

mechanisms relating to concrete. The generic model they presented is applicable to the hydration

of the cement paste, durability assessment and to attack by deleterious species. This model was

used to simulate cracking of a concrete beam subjected to variable environmental loading and

to simulate alkali-silica reactions under variable moisture conditions. The accuracy of the results

obtained demonstrate the potential for porous media mechanics to model the intricate phenomena

involved in reinforced concrete degradation.

A porous media model based on Hybrid Mixture Theory was developed by Gawin et al. [20] for the

analysis of concrete subjected to high temperatures. The model coupled hygro-thermal degradation

with the mechanical response of the material. The model was effective at simulating the effect of

externally applied loading on the deterioration of concrete at high temperatures.

Sciumè et al. [23] developed a thermal-hygro-mechanical model for the behaviour of concrete at

early age with the degree of reaction and mechanical damage as internal variables. A modified

van Genuchten equation was used to account for the continued hydration of the cement paste in

the simulation of autogenous shrinkage. Their model showed good correlation with experimental

results.

A heat and mass transport model for concrete was developed by Salomoni et al. [24]. The model cou-

pled elastoplastic and damage behaviour with creep effects in order to describe concrete subjected
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to medium and high temperatures. In the model, the hydrated cement paste and the aggregate

phase were considered to have differing porosity, permeability and diffusivity.

2.7.2 Rationale for the application of TPM to rust transport

The modelling efforts mentioned in Section 2.6 do not explicitly model the mechanism by which

the rust product penetrates into the concrete pores. The influence of fluid transport and change

in micro-structure in the CAR as a result of precipitation of rust in the concrete pore spaces on

the aforementioned process does not seem to be addressed in these model. Fluid transport affects

the poro-elastic material response of reinforced concrete due to the pore pressure. It is therefore

deduced that the application of these models is significantly limited to cases identical to those used

to calibrate and validate the models.

The Theory of Porous Media makes use of mixture theory in which each of the constituents is

assumed to statistically occupy the whole space simultaneously resulting in a smeared model as

shown in Figure 2.17 [16]. This means the motion, deformations and other physical and geometrical

quantities of each of the constituents may be determined as statistical averages of the real quantities

[18, 19]. It is for this reason that porous media theory is well suited to simulating the complex

multiphasic micro-structure of reinforced concrete and its deterioration.

Figure 2.17: In TPM, each constituent is assumed to simultaneously occupy the whole control
space. Adapted from Hopkins [19].

Using the Theory of Porous Media, the geometrical significance of uniform versus non-uniform

corrosion is no longer relevant. Emphasis is rather assigned to the transport of fluids through

capillary pores and the pressures these fluids exert on the solid skeleton. With the addition of a

concentration into the TPM framework, not only is it possible to model the transport of fluids but
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the diffusion of ions within the fluids as well. Once this framework is established for one type of

solute ion, it may easily be adapted for other ions at sufficiently low concentrations. Consequently,

a model designed to simulate the penetration of rust product into the CAR could be adapted to

model chloride ingress and carbonation.

2.8 Summary

All deterioration mechanisms of concrete depend on the penetrability of the concrete and its mois-

ture state. These mechanisms depend on the transport of fluids through the concrete pore structure.

Reinforcement corrosion is no exception to this fact. Chloride-induced corrosion of the reinforcing

steel requires the availability of water, oxygen and chlorides at the steel surface.

In the last two decades inconsistencies have been recorded between time-to-cracking service life

models and observations from experimental studies of chloride-induced corrosion in reinforced con-

crete. Time-to-cracking models generally underestimate the time required before cracks propagate

to the concrete surface after corrosion initiation.

The discrepancy has been attributed to not adequately accounting for the penetration of corrosion

products into the concrete capillary pores. The corrosion products in the concrete pores do not

contribute to the tensile forces at the steel-concrete interface and therefore a larger quantity of

steel mass may be lost due to corrosion before cover cracking occurs. This translates into a longer

time-to-cracking.

Although efforts have been made to include this process in some time-to-cracking models, no efforts

have yet been made to specifically model the penetration of corrosion products. Explicit simulation

of the process would yield a more accurate estimate of the quantity of corrosion products in the

concrete pores and of the size of the corrosion accommodating region and therefore more accurate

time-to-cracking models

The size of the CAR and rate of penetration of the corrosion product were found to be independent

of both the corrosion rate and the water/binder ratio of the concrete in previous studies. The

rate of penetration decreases as corrosion progresses due to the impregnation of the capillary pores

close to the steel surface. It was also determined that the production and penetration of corrosion

products into the concrete pores occur simultaneously until the corrosion accommodating region is

filled with the rust.
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Porous media theory has successfully been applied to a number of deterioration mechanisms of

concrete involving heat, mass, moisture and solute transport. However, to the author’s knowledge

no studies have been done on chloride-induced corrosion of reinforced concrete. In porous media

theory, it is not necessary to assume uniform corrosion in the numerical model presented as was done

by previous researchers. This is a result of the homogenization process which yields a smeared model

in which the exact location of each of the constituents is not required. It is therefore surmised that

the Theory of Porous Media may be adapted for modelling chloride-induced corrosion in concrete

to yield more accurate time-to-cracking service life models.



3. The Theory of Porous Media

3.1 Introduction

In many disciplines of engineering, it is often necessary to predict the behaviour of a material

body in response to internally and externally applied loads. A first step towards this prediction

is the description of the physical and chemical composition of the body. Solid bodies may consist

of different components and may or may not possess pores filled with fluids. The difference in

material properties between the solid and fluid components of a fluid filled porous body results in

interactions between the constituents making it difficult to characterize their thermodynamic and

mechanical behaviour [16].

Identifying the locations of the aforementioned pore spaces within the solid material to provide a

mechanical description of its structure is often complicated. To avoid this problem, the Theory

of Porous Media (TPM) makes use of mixture theory restricted by the volume fraction concept

to describe the dynamic behaviour of macroscopic porous bodies [16, 19]. In this framework, the

geometric representation of the pore structure and the exact situation of the individual constituents

of the medium need not be regarded [16, 63].

In classical TPM the macroscopic porous body ϕ consists of κ immiscible phases ϕα with α = [1, κ].

Each of these phases may exist as a mixture of miscible components ν [18]. From mixture theory, an

immiscible phase α containing miscible component ν is referred to as the solvent and the miscible

components ν as the solutes [18].

We define the control space as a porous solid BS with boundary ∂BS in the actual configuration at

time t ∈ R and B0S with boundary ∂B0S in the undeformed reference configuration at a fixed time

t0. The whole medium is made up of constituents ϕα with real volumes vα. The boundary ∂BS is

a material boundary for the solid phases but is a non-material boundary for the liquid and gaseous

phases, as they are free to leave the control space [16]. The solid is stipulated to be deformable

41
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and therefore the fluid phase and solid phase fields are coupled. Liquid flow occurs as a result of

pressure gradients or capillary effects. All the fluids present in the medium are in contact with the

solid phase.

3.1.1 Volume fractions

The formulation of the volume fraction concept begins with a theory at the microscale. Continuum

mechanical processes naturally occur in the microscopic domain, however the level of detail provided

at this scale is often not required for application to practical processes. A representative volume

element (RVE) of the microstructure is established so as to allow the expression of the spread of

the immiscible components by an averaging volume fraction defined as

nα(x, t)[−] =
dvα[m3]

dv[m3]
, (3.1)

where x is the position vector in the current configuration, t is the time, dvα is the element volume

of the phase ϕα and dv is the element volume of the bulk medium [16, 18, 19]. The volume fraction

concept yields a smeared substitute continuum in which the components are assumed to occupy

the whole control space so that the saturation condition may be defined as

κ∑
α=1

nα(x, t) = 1. (3.2)

The volume fractions are used to scale the realistic densities of each of the constituents present in

the porous medium to obtain to

ρα[g/m3] = nαραR, (3.3)

where ρα is the partial density and ραR(x, t) is the real density of ϕα. For the real density of a

solution containing a solute suspended in a solvent, the real density is influenced by the molar

concentration cαβ of the solute so that ραR = ραR(x, t, cαβ) [18].

3.2 Kinematics of porous media

The kinematics of porous media are based on the assumptions that in the actual configuration at

time t, each spatial point x is simultaneously occupied by material points Xα of all constituents
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ϕα. Each material point follows from a different reference position Xα at time t = t0 and each

constituent is assumed to have an independent state of motion [16].

The motion of a constituent ϕα is taken to be a sequence of placements χα. Hence for the material

points Xα with reference position vector Xα at time t0, the spatial position vector x at time t may

be given by [16]

x = χα(Xα, t). (3.4)

The equation above is the Lagrangian description of the motion of the constituents and is a bijective

function. χα is theorized to be unique and uniquely invertible leading to an inversion of Equation

3.4 to give the Eulerian description of motion for the constituents as

Xα = χ−1α (x, t). (3.5)

An assumption is made that the derivatives of the motion functions are continuous. The existence

of Equation 3.5 necessitates the definition of the Jacobian as [16]

Jα = det Fα (3.6)

where it is restricted to always be greater than zero to ensure the continuity of the Lagrangian

description of motion. Fα is the deformation gradient defined as [16]

Fα =
∂χα
∂Xα

= Gradα χα (3.7)

and its inverse by

F−1α =
∂Xα

∂xα
= grad−,α Xα (3.8)

“Grad” indicates a partial derivative with respect to the reference position Xα while “grad” indi-

cates a partial derivative with respect to the spatial position x. From Equation 3.4, the Lagrangian

velocity and acceleration of a material point are

x′α =
∂χα(Xα, t)

∂t
(3.9)

x′′α =
∂2χα(Xα, t)

∂t2
(3.10)
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and the Eulerian velocity and acceleration are therefore

vα = x′α = x′α(x, t) (3.11)

aα = x′′α = x′′α(x, t). (3.12)

In the Theory of Porus Media, the mass averaged velocity relative to the motion of the solid is used

to describe the movement of the fluids [37]. The fluid motion is expressed in relation to the current

configuration of the solid skeleton.

The individual constituents have independent motion paths therefore independent material time

derivatives must be formulated. If Γ(x, t) is an arbitrary scalar-valued and differentiable function,

then its material time derivative following the motion of ϕα may be given by [16]

Γ′α =
∂Γ

∂t
+ grad,α Γ · x′α (3.13)

The material and spatial velocity gradients are respectively given as [16]

(Fα)′α = Gradαx
′
α (3.14)

Lα = grad,α x′α (3.15)

The spatial velocity gradient describes the deformation process of the solid phase. Upon manipu-

lation of equations 3.14 and 3.15, the spatial velocity gradient may be related to the deformation

gradient as

Lα = (Fα)′αF
−1
α . (3.16)

On additive decomposition of Lα, we obtain a symmetric part Dα and a skew symmetric part Wα

of the spatial velocity gradient.

Lα = Dα + Wα (3.17)

where

Dα =
1

2
(Lα + LTα) (3.18)

Wα =
1

2
(Lα − LTα) (3.19)
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The symmetric part Dα is defined as the Eulerian strain rate tensor associated with pure straining

and the skew symmetric part Wα is the spin tensor.

de Boer [16] stipulates that it is convenient to make use of the difference of the squares of the line

elements in both the reference and actual configurations to measure deformations. This is due to

the fact that local deformations Fα contain rigid body motions and are not fit for use in constitutive

equations. Usage of the line elements enables the removal of the rigid body motion and circumvents

irrational computations. Evaluating the squares of the line-elements;

dxα · dxα − dXα · dXα = 2Eα : (dXα ⊗ dXα) (3.20)

Using dxα = FαdXα, (3.21)

FαdXα · FαdXα − dXα · dXα = 2Eα : (dXα ⊗ dXα) (3.22)

(FTαFα − I) : (dXα ⊗ dXα) = 2Eα : (dXα ⊗ dXα) (3.23)

∴ 2Eα = FTαFα − I (3.24)

Eα =
1

2
(Cα − I) (3.25)

where Eα is the symmetric Green strain tensor and Cα = FTαFα is the right Cauchy-Green deforma-

tion tensor. In a similar manner, the Almansi strain tensor Aα and left Cauchy-Green deformation

tensor Bα are defined as [16];

dxα · dxα − dXα · dXα = dxα · 2Aαdxα (3.26)

Aα =
1

2
(I−B−1α ) (3.27)

with Bα = FαF
T
α (3.28)

3.3 Balance equations

The balance equations are formulated at the microscopic level from classical continuum mechanics

for each phase of the porous body and are then transformed to the macroscopic level. This is done

by the application of the space averaging technique of integrating the microscopic balance equations

over the representative volume element (RVE) to obtain the macroscopic balance equations [21].
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3.3.1 Balance of mass

The balance of mass equates the rate of mass to the mass supply as follows

(Mα)′α =

∫
Bα

ρ̂α dv (3.29)

with ρ̂α being the mass supply for ϕα and the mass Mα being given by

Mα =

∫
Bα

ρα dv (3.30)

The mass supply is produced by chemical reactions and phase changes between ϕα and the other

components occupying the same point at the same time in the current configuration. Using

(dv)′α = div x′α dv, (3.31)

the rate of mass may be rewritten as

(Mα)′α =

∫
Bα

[
(ρα)′α + ραdiv x′α

]
dv (3.32)

resulting in the balance of mass being given as

∫
Bα

[
(ρα)′α + ραdiv x′α

]
dv =

∫
Bα

ρ̂α dv (3.33)

Hence the local form of the balance of mass equation for a phase α is given by

(ρα)′α + ρα div x′α = ρ̂α (3.34)

3.3.2 Balance of momentum

The balance of momentum equates the material time derivative of momentum to the sum of external

forces as follows [16]

(Iα)′α = kα, (3.35)
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where Iα is the momentum of ϕα and is stipulated as

Iα =

∫
Bα

ρα x′αdv (3.36)

and kα is given by

kα =

∫
Bα

ρα bα dv +

∫
Bα

p̂α dv +

∫
∂Bα

tα da. (3.37)

In the above equation, ραbα are the volume forces, tα are the surface forces and p̂α are the

interaction forces associated with the volumes [16].

Using Cauchy’s theorem whereby

tα = Tαn, (3.38)

the surface forces may be reformulated as

∫
∂Bα

tα da =

∫
∂Bα

Tαn da =

∫
∂Bα

Tα da (3.39)

where Tα is the partial Cauchy stress tensor of ϕα and n is the unit normal to the surface of the

specific constituent body. We then apply the divergence theorem1 to Equation 3.39 to obtain [16]

∫
∂Bα

Tαn da =

∫
Bα

div Tα dv (3.40)

Therefore material time derivative of the momentum Iα is restated as [16]

(Iα)′α =

∫
Bα

ραx′′α + ρ̂αx′α =

∫
Bα

(div Tα + ρα bα + p̂α) dv (3.41)

By summing up the above equation over all constituents of the medium we obtain the local form

of the balance of momentum for the mixture as [16]

κ∑
α=1

[div Tα + ρα (bα − x′′α)] =

κ∑
α=1

[ρ̂αx′α − p̂α] (3.42)

1Also known as Gauss’ Theorem is given as
∫

Ω
div q dv =

∫
∂Ω

q · n da
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In comparison to those for a single component medium, the balance of mass and balance of mo-

mentum for the mixture must fulfil the following condition [16]

κ∑
α=1

p̂α = 0 (3.43)

3.3.3 Balance of angular momentum

The constituents of the partially saturated porous medium described in this work are considered to

be non-polar at the microscopic scale and hence without needing to extensively develop the balance

of angular momentum it can be concluded that the partial stress tensor Tα is symmetric, i.e

Tα = (Tα)T (3.44)

and that the summation of the vectors coupling angular momentum between the phases is zero [37].

3.3.4 Balance of energy

The balance of energy is also known as the first law of thermodynamics and equates the sums of

the material time derivatives of the internal and kinetic energies to the mechanical work and heat

rates. For each constituent in the porous medium, this equation is [16]

(Eα)′α + (Kα)′α = Wα +Qα +

∫
Bα

êα dv, (3.45)

where Eα is the internal energy, Kα the kinetic energy, Wα the rate of mechanical work, Qα the

rate of heat and êα is the energy supply from the other constituents to ϕα. These are given by

Eα =

∫
Bα

ραεα dv (3.46)

Kα =

∫
Bα

1

2
ραx′α · x′α dv (3.47)

Wα =

∫
Bα

x′α · ραbα dv +

∫
∂Bα

x′α · tα dv (3.48)

Qα =

∫
Bα

ραrα dv −
∫
∂Bα

qα · da (3.49)

where εα is the specific internal energy, rα is the partial energy source and qα is the partial heat

flux which is negative when leaving the body. By making use of the following relations,
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(Eα)′α =

∫
Bα

[
ρα(εα)′α + ρ̂αεα

]
dv, (3.50)

(Kα)′α =

∫
Bα

(ραx′′α +
1

2
ρ̂αx′α) · x′αdv, (3.51)∫

∂Bα

x′α ·Tαn da =

∫
Bα

(div Tα · x′α + Tα · Lα)dv, (3.52)∫
∂Bα

qα · n da =

∫
Bα

div qαdv (3.53)

the balance of energy may be rewritten as

∫
Bα

[
ρα(εα)′α + ρ̂αεα

]
dv +

∫
Bα

(ραx′′α +
1

2
ρ̂αx′α) · x′αdv =

∫
Bα

[
(div Tα · x′α + ραbα) + Tα · Lα

]
dv

+

∫
Bα

(ραrα − divqα) dv +

∫
Bα

êα dv

(3.54)

and in the local form,

ρα(εα)′α + ρ̂α(εα +
1

2
x′α · x′α) =

[
div Tα · x′α + ρα(bα + x′′α)

]
· x′α

+ Tα · Lα + ραrα − divqα + êα
(3.55)

Due to the symmetry of the partial Cauchy stress tensor Tα as expressed in Section 3.3.3, we can

substitute Lα with Dα and make use of the local balance of momentum in Equation 3.42 to produce

an alternative expression for the balance of energy equation as

ρα(εα)′α −Tα ·Dα − ραrα + divqα = êα − p̂α · x′α − ρ̂α(εα − 1

2
x′α · x′α) (3.56)

and by summing up over all the κ constituents, we obtain

κ∑
α=1

[ρα(εα)′α −Tα ·Dα − ραrα + divqα] =

κ∑
α=1

[êα − p̂α · x′α − ρ̂α(εα − 1

2
x′α · x′α)] (3.57)

We compare the above equation to that of a single constituent material and determine that in order

to satisfy the third metaphysical principal of Truesdell2, the following condition must be true and

2This principal states that ”the motion of the mixture body is governed by the same equations as those for a single
body.” [16]
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is sufficient;

κ∑
α=1

êα = 0. (3.58)

3.4 Entropy inequality

The entropy inequality is used to systematically develop constitutive equations in order to obtain

a uniform macroscale thermodynamic description of the material behaviour3. Using the entropy

inequality guarantees that the second law of thermodynamics is not contravened [37]. The entropy

Hα is given as

Hα =

∫
Bα

ραηα dv (3.59)

where ηα is the partial specific entropy. The inequality is defined as

κ∑
α=1

(Hα)′α ≥
κ∑

α=1

∫
Bα

1

θα
ραrα dv −

κ∑
α=1

∫
∂Bα

1

θα
qα · da (3.60)

where θα is the partial temperature. Using the material time derivative of the entropy

(Hα)′α =

∫
Bα

[ρα(ηα)′α + (ρα)′αη
α] dv, (3.61)

and the equation

∫
∂Bα

1

θα
qα · da =

∫
Bα

div(
1

θα
qα) dv, (3.62)

the entropy inequality becomes

κ∑
α=1

∫
Bα

[ρα(ηα)′α + (ρα)′αη
α] dv ≥

κ∑
α=1

∫
Bα

[
1

θα
ραrα − div(

1

θα
qα)] dv (3.63)

with

ραrα = −ρα(εα)′α + Tα ·Dα − div qα − êα + p̂α · x′α + ρ̂α(εα +
1

2
x′α · x′α), (3.64)

3The use of the entropy inequality was pioneered by Coleman and Noll [64] and used by Gray and Hassanizadeh
[65] in the development of constitutive relations for flow in partially saturated soil.
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and

div(
1

θα
qα) = − 1

θα
gradθα · qα + div qα. (3.65)

With the Helmholtz free energy function

ψα = εα − θαηα, (3.66)

its derivative

(ψα)′α = (εα)′α − (θα)′αη
α − θα(ηα)′α (3.67)

and the local balance of energy from Equation 3.55 in mind, the final form of the entropy inequality

is rewritten as

κ∑
α=1

1

θα
{−ρα[(ψα)′α + (θα)′αη

α]− ρ̂α(ψα − 1

2
x′α · x′α)

+ Tα ·Dα − p̂α · x′α −
1

θα
qα · gradθα + êα} ≥ 0

(3.68)

This entropy inequality is conveniently adequate for obtaining restrictions for the constitutive

relations in the model and so other expressions of the entropy inequality will not be dealt with

in this work.



4. The triphasic material model with a misci-

ble component

4.1 The triphasic porous body

The existing generic two-phase framework for porous media was presented in the previous chapter

[16, 18, 19]. In this chapter, the framework developed for modelling the penetration of iron III

chloride using TPM in this study is presented. The two-phase theory is compounded to include

three immiscible components identified as the solid phase ϕS, the liquid phase ϕL and the gas phase

ϕG.

The liquid and gas phases are collectively referred to as the fluid phase ϕF with the liquid phase

defined as the wetting fluid and the gas phase the non-wetting fluid. Wetting is the tendency for a

fluid to sustain contact with a solid surface due to intermolecular forces between the two phases.

For a comprehensive description on wetting, the reader is referred to Bear and Bachmat [15] section

5.1.1. The two fluids are transported through the pore space of the solid body. Each fluid phase is

separated from the other phases by a surface boundary and inhabits a well defined portion of the

pore space at the microscopic level [15].

A miscible component ϕLQ is included in the liquid phase. Due to the presence of a solute within

the liquid phase, a distinction needs to be made between components of the same phase which will

be denoted in normal case (ϕL, ϕLQ) and the phase itself which will be denoted in bold case (ϕL)

so that

ϕL = ϕL + ϕLQ. (4.1)

52



4. The triphasic material model with a miscible component 53

To commence the description of the triphasic material model, the pore saturation degree s with

the α phase is defined as [21]

sα =
nα

nF
, α = L,G. (4.2)

where nF is the volume of pores within the concrete matrix according to

nF = 1− nS, (4.3)

and nS is the solid volume fraction. Equation (4.2) may alternatively be expressed as

nα = nF sα, α = L,G, (4.4)

so that we obtain the ansatz

sL + sG = 1 (4.5)

where sL and sG are the saturation degrees with the liquid and gas phase respectively.

We assume that the temperature differences between the constituents are negligible resulting in

local thermodynamic equilibrium. Therefore at a particular point, the partial temperature θα and

partial heat flux qα of all the components of the medium is equal [21]. This simplifies the model

in that one set of variables is used to describe the thermodynamic state of all the constituents

according to

θS = θL = θG = θ (4.6)

qS = qL = qG = q. (4.7)

From the above equations, it is deduced that the internal energy supplies are all zero,

êS = 0, êL = 0, êG = 0. (4.8)
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The solid and liquid phases are assumed incompressible and consequently it holds for the densities

in the deformed and undeformed configurations

ρSR = ρSR0S = constant, and therefore ( ρSR)′S = ( ρSR0S )′S = 0; (4.9)

ρLR = ρLR0L = constant, and therefore ( ρLR)′L = ( ρLR0L )′L = 0. (4.10)

The gaseous phase is modelled as an ideal gas assumed to be pure oxygen.

A quasi-static state is assumed for the motion of all phases so that dynamic effects may be disre-

garded leading to

x′′α = 0; for α = S,L,G (4.11)

4.2 Balance equations for a triphasic continuum

The general balance equations for a porous medium are given in Section 3.3. In this section, the

balance equations have been adapted for a triphasic porous medium with a miscible component in

the liquid phase.

4.2.1 The balance of mass

The balance of mass for the solid phase

Using the general form of the balance of mass given in Equation (3.34), the balance of mass for the

solid phase is [16]

( ρS)′S + ρS div x′S = 0. (4.12)

Making use of the equation for partial density

ρα = nα ραR, (4.13)

Equation (4.12) becomes

(nS ρSR)′S + nS ρSR div x′S = 0 or (4.14)

(1− nF)( ρSR)′S − ρSR(nF)′S + (1− nF) ρS div x′S = 0. (4.15)
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The balance of mass for the gas phase

The local mass balance equation for the gas is [18]

( ρG)′G + ρG div x′G = 0 (4.16)

which may be rewritten using Equation (4.13) as

(nG ρGR)′G + nG ρGR div x′G = 0. (4.17)

Substituting for nG = nFsG, we arrive at

(nFsG ρGR)′G + nFsG ρGR div x′G = 0. (4.18)

The balance of mass for the pore liquid

It is important to reiterate that the liquid phase ϕL is made up of a mixture of a solute, ϕLQ and

a solvent, the water (ϕL) as previously stated in Equation (4.1). Therefore the balance of mass for

the solvent is given by

( ρL)′L + ρL div x′L = 0 (4.19)

which may be rewritten using Equation (4.13) as

(nL ρLR)′L + nL ρLR div x′L = 0. (4.20)

Substituting for nL = nFsL;

(nFsL ρLR)′L + nFsL ρLR div x′L = 0. (4.21)

The balance of mass for the solute

The kinematics of porous media presented in chapter 3 are applicable to both solvents and solutes.

We therefore proceed to establish the balance of mass for the solute similarly as was done for the

solute [18]. The balance of mass for the solute is given by

( ρLQ)′LQ + ρLQ div x′LQ = ρ̂LQ. (4.22)
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It is postulated that the solute does not significantly change the volume of the solvent so that is

assumed dvL = dvL. Hence the solute does not posses a unique volume fraction but is assigned a

molar concentration according to

cLQ[mol/m3] =
nQmol[mol]

dvL
(4.23)

nQmol =
mQ[g]

MQ
mol[g/mol]

(4.24)

mQ(x, t) =

∫
BL

cLQMQ
mol dvL =

∫
BL

nLcLQMQ
mol dv (4.25)

where cLQ is the concentration of the solute FeCl−3 dissolved in the pure water, nQmol is its molar

amount, mQ is the partial mass and MQ
mol is the molar mass. Comparison of Equation (4.25) of

the partial mass of the solute with Equation (3.30), the density of the solute is realized to be

ρLQ = nLcLQMQ
mol. (4.26)

This is substituted into Equation (4.22) to obtain

(nLcLQMQ
mol)

′
LQ + nLcLQMQ

mol div x′LQ = ρ̂LQ (4.27)

where with no mass supply, ρ̂LQ = 0. Bearing in mind the definition of the material time derivative

of a scalar quantity and that the molar mass of the solute is a constant, the balance of mass for

the solute is rewritten as

(nLcLQ)′LQ + nLcLQ div x′LQ = 0. (4.28)

Substituting for nL = nFsL, the final form of the balance of mass for the solute becomes

(nFsLcLQ)′LQ + nFsLcLQ div x′LQ = 0. (4.29)

4.2.2 Balance of linear momentum for the triphasic continuum

From equations (3.42) and (3.43) and by neglecting inertial effects, the balance of linear momentum

for the whole mixture is given as

div T + ρb = 0 (4.30)
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where

T = TS + TL + TLQ + TG (4.31)

ρ = (1− nF) ρS + (nF sL) ρL + (nF sG) ρG (4.32)

and b is the external body force. From Ehlers and Bluhm [38], Equation (4.30) may be written for

each constituent as

div TS + (1− nF) ρSb− p̂F = 0 (4.33)

div TL + nF sL ρLb + p̂L = 0 (4.34)

div TLQ + p̂LQ = 0 (4.35)

div TG + nF sG ρGb + p̂G = 0 (4.36)

with the consideration of Equation (4.40). From Equation (4.35) it is noticed that the solute is not

subjected to the external body force.

4.2.3 The balance of energy for the triphasic continuum

The thermal behaviour of the mixture may be described by the energy balance relation given in

Equation (3.57) taking into consideration the internal energy defined as

εα = ψα + θαηα (4.37)

as well as the constraints of the saturation condition, the mass supply and the interaction forces as

respectively listed below

nS + nL + nG = 1 (4.38)

ρ̂S + ρ̂L + ρ̂LQ + ρ̂G = 0 (4.39)

p̂S + p̂F = 0 (4.40)

p̂F = p̂L + p̂LQ + p̂G (4.41)

The resulting balance equation is used in the evaluation of the entropy inequality.

κ∑
α=1

[
ρα(ψα + θαηα)′α −Tα ·Dα − ραrα + divqα

]
=

κ∑
α=1

[
êα − ρ̂α(ψα + θαηα − 1

2
x′α · x′α)

]
(4.42)
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4.3 Constitutive theory

The balance equations elaborated on in the previous section are coupled with constitutive relations

in order to complete the description of the mechanical behaviour of the mixture. It is important

when selecting constitutive equations to make use of quantities that can be experimentally measured

and to select models that have been extensively validated. These models are typically obtained

from evaluation of the entropy inequality and involve the linearisation of more complex cases [37].

4.3.1 Evaluation of the entropy inequality

The entropy inequality is given by

∑
α

1

θ
{−ρα

[
(ψα)′α + (θα)′αη

α
]
− ρ̂α(ψα − 1

2
x′α · x′α) + Tα ·Dα − p̂α · x′α

− qα · gradθα + êα} ≥ 0

(4.43)

Given the saturation condition

nS + nL + nG = 1, (4.44)

and taking its material time derivative with respect to the solid skeleton yields

(nS)′S + (nL)′S + (nG)′S = 0. (4.45)

From the material time derivative of a differentiable function in Equation (3.13), the material time

derivative of the volume fraction is derived as

(nα)′α =
∂nα

∂t
+ grad,α n

α x′α (4.46)

and (nα)′β =
∂nα

∂t
+ grad,α n

α x′β. (4.47)

Therefore

(nα)′α − grad,α n
α x′α = (nα)′β − grad,α n

α x′β, (4.48)

(nα)′β = (nα)′α − grad,α n
α (x′α − x′β) (4.49)
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and finally

(nα)′β = (nα)′α − gradnα ·wαβ, (4.50)

where the substitution for the velocity of α-phase relative to the β-phase wαβ = x′α − x′β has been

made. Recalling that the liquid phase ϕL is made up of the miscible components ϕL and ϕLQ that

occupy the same volume fraction nL, Equation (4.45) becomes

(nS)′S + (nL)′L + (nG)′G − gradnL ·wLS − gradnG ·wGS = 0. (4.51)

From Equation (4.13) for partial density, we obtain an alternative form for the material time

derivative of the volume fraction (nα)′α as

(nα)′α =
nα

ρα
(ρα)′α −

nα

ραR
(ραR)′α and (4.52)

nα

ρα
(ρα)′α = −nαDα · I. (4.53)

Noting that for the incompressible components,

nα

ραR
(ραR)′α = 0

Equation (4.51) is reformulated as

− nSDS · I− nLDL · I− nGDG · I−
nG

ρGR
(ρGR)′G − grad nL ·wLS

− grad nG ·wGS = 0.

(4.54)

Multiplying the above equation with a Lagrange multiplier, λ yields

− λnSDS · I− λnLDL · I− λnGDG · I− λ
nG

ρGR
(ρGR)′G − λ grad nL ·wLS

− λ grad nG ·wGS = 0.

(4.55)

From Equation (4.27) the material time derivative of the balance of mass for the solute with respect

to the solid skeleton is

(nLcLQ)′S + grad (nLcLQ) ·wLQS + nLcLQ DLQ − ρ̂LQ = 0, (4.56)
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where the substitutions

(nLcLQ)′LQ = (nLcLQ)′S + grad (nLcLQ) ·wLQS

and

div x′LQ = DLQ · I

have been made. Making use of equations (4.50), (4.52) and (4.53), Equation (4.56) becomes

− cLQnLDL · I− cLQ grad nL ·wLS + nL(cLQ)′LQ − nL grad cLQ ·wLQS

+ grad (nLcLQ) ·wLQS + nLcLQ DLQ · I− ρ̂LQ = 0.
(4.57)

Another Lagrangian multiplier, λLQ is applied to the previous equation to yield

− λLQcLQnLDL · I− λLQcLQ grad nL ·wLS + λLQnL(cLQ)′LQ − λLQnL grad cLQ ·wLQS

+ λLQgrad (nLcLQ) ·wLQS + λLQnLcLQ DLQ · I− λLQρ̂LQ = 0.
(4.58)

Equations (4.55) and (4.58) are added to the extended entropy inequality to give

1

θ
{−ρS

[
(ψS)′S + (θS)′Sη

S
]
− ρL

[
(ψL)′L + (θL)′Lη

L
]
− (nLcLQMQ

mol)
[
(ψLQ)′LQ + (θLQ)′LQη

LQ
]

− ρG
[
(ψG)′G + (θG)′Gη

G
]
− ρ̂S(ψS − 1

2
x′S · x′S)− ρ̂L(ψL − 1

2
x′L · x′L)− ρ̂LQ(ψLQ − 1

2
x′LQ · x′LQ)

− ρ̂G(ψG − 1

2
x′G · x′G) + TS ·DS + TL ·DL + TLQ ·DLQ + TG ·DG − p̂S · x′S − p̂L · x′L

− p̂LQ · x′LQ − p̂G · x′G − q · gradθ + λnSDS · I + λnLDL · I + λnGDG · I + λ
nG

ρGR
(ρGR)′G

+ λ grad nL ·wLS + λ grad nG ·wGS − λLQcLQnLDL · I− λLQcLQ grad nL ·wLS + λLQnL(cLQ)′LQ

− λLQnL grad cLQ ·wLQS + λLQgrad (nLcLQ) ·wLQS + λLQnLcLQ DLQ · I− λLQρ̂LQ} ≥ 0.

(4.59)

The following assumptions are made for the Helmholtz free energy functions

ψS = ψ̂S(CS) (4.60)

ψL = ψ̂L(−) (4.61)

ψLQ = ψ̂LQ(cLQ) (4.62)

ψG = ψ̂G(ρGR). (4.63)
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Taking their material time derivatives gives,

(ψS)′S = 2 FS
∂ψS

∂CS
FTS ·DS (4.64)

(ψL)′L = − (4.65)

(ψLQ)′LQ =
∂ψLQ

∂cLQ
(cLQ)′LQ (4.66)

(ψG)′G =
∂ψG

∂ρGR
(ρGR)′G. (4.67)

For the isothermal deformations considered in this work, (θα)′α and grad θ = 0 [16]. Making use of

the Equations (4.6)-(4.11), along with

−p̂S = p̂F = p̂L + p̂LQ + p̂G (4.68)

and substituting equations (4.64) - (4.67) into Equation (4.59) yields

− 2 ρSFS
∂ψS

∂CS
FTS ·DS − (nLcLQ)

∂ψLQ

∂cLQ
(cLQ)′LQ − ρG

∂ψG

∂ρGR
(ρGR)′G − ρ̂LQ(ψLQ)

+ TS ·DS + TL ·DL + TLQ ·DLQ + TG ·DG − p̂L ·wLS − p̂LQ ·wLQS − p̂G ·wGS

+ λnSDS · I + λnLDL · I + λnGDG · I + λ
nG

ρGR
(ρGR)′G + λ grad nL ·wLS + λ grad nG ·wGS

− λLQcLQnLDL · I− λLQcLQ grad nL ·wLS + λLQnL(cLQ)′LQ − λLQnL grad cLQ ·wLQS

+ λLQgrad (nLcLQ) ·wLQS + λLQnLcLQ DLQ · I− λLQρ̂LQ ≥ 0

(4.69)
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which may be rewritten as

(ρGR)′G{−ρG
∂ψG

∂ρGR
+ λ

nG

ρGR
}

+ (cLQ)′LQ{−(nLcLQ)
∂ψLQ

∂cLQ
+ λLQ nL}

+ DS{TS − 2 ρSFS
∂ψS

∂CS
FTS + λnSI}

+ DL{TL + λnLI− λLQ nLcLQI}

+ DLQ{TLQ + λLQ nLcLQI}

+ DG{TG + λnGI}

+ wLS{−p̂L + λ gradnL − λLQ cLQgrad nL}

+ wLQS{−p̂LQ − λLQ nL grad cLQ + λLQgrad (nLcLQ)}

+ wGS{−p̂G + λ grad nG}

− ρ̂LQ{λLQ + ψLQ} ≥ 0.

(4.70)

Coleman and Noll [64] stipulates that the entropy inequality must hold for fixed values of the

process variables

P = {CS, ρ
GR, cLQ, ρ̂LQ,wLS,wLQS,wGS}

and for arbitrary values of the freely available variables

A = {DS,DL,DLQ,DG, (ρ
GR)′G, (c

LQ)′LQ}

which are the derivatives process variables in time and space [18, 38]. Without mass exchange,

ρ̂LQ = 0. Therefore, the following relations are obtained which are sufficient for the satisfaction of

the second law of thermodynamics for the ternary model with no mass supply of the solute FeCl−3
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TS − 2 ρSFS
∂ψS

∂CS
FTS + λ nSI = 0

TL + λnLI− λLQ nLcLQI = 0

TLQ + λLQ nLcLQI = 0

TG + λnGI = 0

p̂L = λ gradnL − λLQ cLQgrad nL

p̂LQ = −λLQ nL grad cLQ + λLQgrad (nLcLQ)

p̂G = λgrad nG

(4.71)

with the dissipation

D =wLS{−p̂L + λgrad nL − λLQ cLQgrad nL}+ wLQS{−p̂LQ − λLQ nLgrad cLQ

+ λLQgrad (nLcLQ)}+ wGS{−p̂G + λ grad nG} ≥ 0.
(4.72)

4.3.2 Stresses

The total Cauchy stress is given by

T = TS + TL + TLQ + TG (4.73)

Substituting for

TS = 2 ρSFS
∂ψS

∂CS
FTS − λ nSI (4.74)

TL = −λnLI + λLQ nLcLQI (4.75)

TLQ = −λLQ nLcLQI (4.76)

TG = −λnGI (4.77)

into Equation (4.73) yields

T = 2 ρSFS
∂ψS

∂CS
FTS − λ nSI− λ nLI + λLQnLcLQI− λLQnLcLQI− λ nGI and (4.78)

T = 2 ρSFS
∂ψS

∂CS
FTS − λ(nS + nL + nG)I. (4.79)
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Making use of the saturation condition in Equation (4.38) yields the total Cauchy stress as

T = TS
E − pSI (4.80)

where

TS
E = 2 ρSFS

∂ψS

∂CS
FTS (4.81)

is the effective stress tensor and λ = pS is the pore pressure defined as an average of the two fluid

pressures [15] according to

pS = sL pLR + sG pGR. (4.82)

pLR is the pressure exerted by the liquid and pGR is the pressure exerted by the gas of the solid

body. From Equation (4.70)1 we obtain

λ
nG

ρGR
= ρG

∂ψG

∂ρGR
= nGρGR

∂ψG

∂ρGR
(4.83)

λ =
ρGR

nG
nGρGR

∂ψG

∂ρGR
(4.84)

λ = (ρGR)2
∂ψG

∂ρGR
(4.85)

and from Equation (4.70)2

−(nLcLQ)
∂ψLQ

∂cLQ
+ λLQnL = 0 (4.86)

λLQ = cLQ
∂ψLQ

∂cLQ
. (4.87)

From Ricken et al. [18], it is assumed that the Helmholtz free energy for the gas and solute con-

stituents respectively are given by

ψG = − 1

ρGR

{
RGθ

[
ln

(
ρGR0

ρGR

)
− 1

]}
(4.88)

ψLQ = − 1

cLQ

{
RGθ

[
ln

(
cLQ

cLQ0

)
+ 1

]
+ µLQ0

}
(4.89)

where p0 is the atmospheric pressure, ρGR0 is the reference gas density, µLQ is the chemical potential

of the solute, cLQ0 is the reference solute concentration and µLQ0 is the reference solute chemical
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potential [18]. Substituting Equation (4.89) into Equation (4.76) yields

TLQ = −nL
(
RGθ ln

(
cLQ

cLQ0

)
+ µLQ0

)
I = −nLµLQI (4.90)

with µLQ = RGθ ln

(
cLQ

cLQ0

)
+ µLQ0 [18]. Equation (4.75) is subsequently reformulated to give

TL = −nLpLRI + nLµLQI (4.91)

Similarly, Equation (4.88) is substituted into Equation (4.77) to give

TG = −nG
(
RGθ ln

(
ρGR0

ρGR

)
+ p0

)
I = −nGpGRI (4.92)

where pGR = RGθ ln
(
ρGR0

ρGR

)
+ p0 [18].

4.3.3 Seepage velocities for the fluids

To evaluate the seepage velocity for the gas, use is made of the local balance of linear momentum

for the gas phase given in Equation (4.36). The Cauchy stress for the gas phase from Equation

(4.92) and the interaction forces p̂G given by [18]

p̂G = pGRgrad nG − αwGSwGS (4.93)

where αwGS is a positive material parameter associated with the relative permeability of the gas

phase are substituted into Equation (4.36) to yield

−div(nGpGRI) + ρGb + pGRgrad nG − αwGSwGS = 0. (4.94)

Using the substitution

div(nGpGRI) = pGRgrad nG + nGgrad pGR,

Equation (4.94) becomes

−pGRgrad nG − nGgrad pGR + ρGb + pGRgrad nG − αwGSwGS = 0. (4.95)
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The equation is rearranged to obtain the seepage velocity of the gas phase nGwGS as

nGwGS =
nG

αwGS

[−nGgradpGR + ρGb]. (4.96)

Substituting for the gas density ρG = nGρGR gives

nGwGS =
(nG)2

αwGS

[−gradpGR + ρGR b]. (4.97)

Comparison of Equation (4.97) with Darcy’s Law in Equation 2.1 leads to the ansatz

(nG)2

αwGS

=
kkrG

µG
, (4.98)

which we refer to as the gaseous Darcy coefficient. In this equation, k is the intrinsic permeability

also referred to as the absolute permeability of the porous solid body, krG and µ are respectively

the relative permeability and the viscosity of the gas phase. The seepage velocity for the gas finally

becomes

nGwGS =
kkrG

µG
[−nGgradpGR + ρGb]. (4.99)

Similarly to what was done for the gas phase, the seepage velocity for the liquid phase is obtained

from the balance of momentum for the solvent in Equation (4.34). The interaction forces p̂L are

given by [18]

p̂L = pLRgrad nL − µLQgrad nL + p̂LE (4.100)

with p̂LE = −γL5θ grad θ − γLwLS
wLS + γLwLQS

wLQS (4.101)

where p̂LE is the effective production of momentum for the solvent, γL5θ is the thermal conductivity

of the solvent and γLwLS
and γLwLQS

are weighting factors for the influence of each velocity wLS and

wLQS on the interaction forces. γLwLS
and γLwLQS

are always restricted to be greater than zero.

Substituting the above and Equation (4.91) into Equation (4.34) gives

div[−pLRnLI + µLQnLI] + ρLb + pLRgrad nL − µLQgrad nL − γL5θgrad θ

− γLwLS
wLS + γLwLQS

wLQS = 0.
(4.102)
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Evaluating

div[−pLRnLI + µLQnLI] = (µLQnLδij),j − (pLRnLδij),j

= nLµLQ,j δij + µLQnL,jδij − nLpLR,j δij − pLRnL,jδij

= nLgrad µLQ + µLQgrad nL − nLgrad pLR − pLRgrad nL

(4.103)

and substituting into Equation (4.102) gives;

nLgrad µLQ + µLQgrad nL − nLgrad pLR − pLRgrad nL + ρLb + pLRgrad nL − µLQgrad nL

− γL5θgradθ − γLwLS
wLS + γLwLQS

wLQS = 0.

(4.104)

For an isothermal process grad θ = 0, hence Equation (4.104) is simplified to yield

nLgrad µLQ − nLgrad pLR + ρLb− γLwLS
wLS + γLwLQS

wLQS = 0. (4.105)

To obtain the liquid seepage velocity nLwLS , Equation (4.105) is rearranged to obtain

nLwLS =
nL

γLwLS
[nL(grad µLQ − grad pLR) + nLρLRb + γLwLQS

wLQS]. (4.106)

Comparison of the above equation with Darcy’s Law in Equation (2.1) similarly to what was done

with the gas phase yields

nL

γLwLS

=
kkrL

µL
, (4.107)

which is referred to as the liquid Darcy coefficient. The parameters krL and µL are the relative

permeability and the viscosity of the liquid phase respectively. The final form of the equation for

the liquid seepage velocity nLwLS is therefore

nLwLS =
kkrL

µL
[nL(grad µLQ − grad pLR) + nLρLRb + γLwLQS

wLQS]. (4.108)
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Following similar steps to the solvent seepage velocity, the seepage velocity for the solute is obtained

using Equation (4.35) with the interaction forces p̂LQ given by [18]

p̂LQ = µLQgrad nL + p̂LQE (4.109)

and p̂LQE = −γQ5θgradθ − γQwLS
wLS − γQwLQS

wLQS. (4.110)

Substituting Equations (4.90), (4.109) and (4.110) into Equation (4.35) yields

div[−nLµLQI] + µLQgrad nL − γQ5θgradθ − γQwLS
wLS − γQwLQS

wLQS = 0. (4.111)

This is reformulated to give

− µLQgrad nL − nLgrad µLQ + µLQgrad nL − γQ5θgradθ − γQwLS
wLS

−γQwLQS
wLQS = 0.

(4.112)

Recalling from the seepage velocity of the liquid that grad θ = 0 gives the seepage velocity for the

solute nLwLQS as

nLwLQS =
nL

γQwLQS

[
−nLgrad µLQ − γQwLS

wLS

]
. (4.113)

4.3.4 Liquid saturation

The choice of capillary pressure as the moisture state variable was discussed in Section 2.4.1. Ehlers

and Bluhm [38] defined the capillary pressure pC as

pC = pGR − pLR, (4.114)

and couples the effective liquid to the effective gas pressures. The capillary pressure is further

related to the degree of saturation with the liquid sL which quantifies the proportion of fluids

present in the pores using the van Genuchten relation

sL = [1 + (αpC)j ]−h (4.115)
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with j and h being coupled according to the equation

h = 1− 1

j
(4.116)

where α and j are material constants determined experimentally.

4.4 Weak formulations of the governing equations

Considering the assumptions and constitutive relations set out in the previous sections, the unknown

quantities are

U(x, t) = {uS,wLS ,wLQS ,wGS , p
C , pGR, nS, nL, nG, µLQ}. (4.117)

The incompressibility of the solid phase enables the derivation of the solid volume fraction nS in

the spatial configuration by integrating the balance of mass for the solid phase to yield [16]

nS =
nS0S
JS

. (4.118)

The liquid volume fraction nL is calculated from the pore volume fraction nF = 1 − nS and the

degree of saturation sL (obtained from the van Genuchten relation) as

nL = nFsL. (4.119)

The gas volume fraction may then be obtained from the saturation condition according to;

nG = 1− nS − nL (4.120)

or similarly to the liquid volume fraction as

nG = nF(1− sL). (4.121)

The filter velocities wLS ,wLQS and wGS are evaluated as described in Section 4.3.3. Therefore the

remaining unknowns are

U(x, t) = {uS, p
C , pGR, µLQ}. (4.122)
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In order to solve for the variables in Equation (4.122), weak formulations based on the standard

Galerkin procedure are formulated. The balance of momentum for the mixture is multiplied with

the test function δuS to solve for the solid displacements, uS. The volume balance for the liquid

solvent is multiplied with the test function δpC to solve for the capillary pressure, pC and the mass

balance for the pore gas is multiplied with the test function δpGR to solve for the effective gas

pressure, pGR. Finally, the balance of mass for the solute is multiplied with the test function δµLQ

to solve for the chemical potential due to the concentration of the solute, µLQ.

4.4.1 Weak form for the balance of momentum for the mixture

The balance of linear momentum for the mixture is given in Equation (4.30). The weak form of

Equation (4.30) is introduced as

GuS =

∫
B

(div T + ρb) · δuS dv. (4.123)

Proceeding to map to the reference configuration

∫
B

div T dv =

∫
∂B

Tn da =

∫
∂B

Tn JS FT−1dA0S =

∫
∂B

PN dA0S =

∫
∂B

Div P dV0S (4.124)

where n and N are the outward surface normal vectors to the porous solid in the current and

reference configuration respectively. Using the relationship

Div P · δuS = Pij,j δui = (Pij δui)j − Pij δui,j (4.125)

and P N = t (4.126)

where t is the traction [63] and Green’s theorem

∫
B0

Pijδui,j dV0S =

∫
∂B0

Pijδui NjdA0S =

∫
∂B0

tiδui dA0S (4.127)

to obtain

∫
B

Div P · δuS dv =

∫
B0

P ·Grad δuS dV0S −
∫
∂B0

t · δuS dA0S (4.128)
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yields

GuS =

∫
B0

P ·Grad δuS dV0S +

∫
B0

JS ρ b · δuS dV0S −
∫
∂B0

t · δuS dA0S = 0. (4.129)

4.4.2 Weak form for the balance of mass for the pore gas

The balance of mass of the gas phase is given in Equation (4.16). Taking its material time derivative

with respect to the solid skeleton,

(ρG)′G = (ρG)′S + grad ρG ·wGS (4.130)

and substituting this into Equation (4.16) yields

(ρG)′S + grad ρG ·wGS + ρG div x′G = 0. (4.131)

Recall that ρG = nGρGR and that nG = nFsG so that Equation (4.131) becomes

(nFsGρGR)′S + grad (nFsGρGR) ·wGS + (nFsGρGR) div x′G = 0. (4.132)

Expanding the above equation gives

(nF)′S s
GρGR + (sG)′S n

FρGR + (ρGR)′S n
FsG + grad (nFsGρGR) ·wGS

+ (nFsGρGR) div x′G = 0.
(4.133)

Using div x′G = div (x′S + wGS), Equation (4.133) becomes

(nF)′S s
GρGR + (sG)′S n

FρGR + (ρGR)′S n
FsG + grad(nFsGρGR) ·wGS

+ (nFsGρGR) div (x′S + wGS) = 0.
(4.134)

Equation (4.134) is divided by sGρGR and use is made of Gauss’s theorem to expand

grad (nFsGρGR) ·wGS = div (nFsGρGRwGS)− (nFsGρGR) div wGS (4.135)
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and obtain

(nF)′S +
nF

sG
(sG)′S +

nF

ρGR
(ρGR)′S +

1

sGρGR
div (nFsGρGRwGS)− nF div wGS

+ nF div (x′S + wGS) = 0

(4.136)

which may be rewritten as

(nF)′S +
nF

sG
(sG)′S +

nF

ρGR
(ρGR)′S +

1

sGρGR
div (nFsGρGRwGS) + nF div x′S = 0. (4.137)

The mass balance of the solid phase is given as

−(nF)′S +
1− nF

ρSR
(ρSR)′S + (1− nF) div x′S = 0. (4.138)

Summation of equations (4.137) and (4.138) to eliminate (nF)′S yields

nF

sG
(sG)′S +

nF

ρGR
(ρGR)′S +

1

sGρGR
div (nFsGρGRwGS) + nF div x′S

1− nF

ρSR
(ρSR)′S + (1− nF) div x′S = 0

(4.139)

and is rewritten as

nF

sG
(sG)′S +

nF

ρGR
(ρGR)′S +

1

sGρGR
div (nFsGρGRwGS) +

1− nF

ρSR
(ρSR)′S + div x′S = 0. (4.140)

Recall from the constitutive theory that

ρGR =
pGR

Rθ

so that

(ρGR)′S =
1

Rθ
(pGR)′S

and note that the material time derivative of the incompressible solid phase density is given by

Lewis and Schrefler [37] as

1

ρSR
(ρSR)′S =

1

1− nF
βS (1− nF) T ′S (4.141)
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where T is the temperature above a reference value and βS is the thermal coefficient of expansion

for the solid phase [37].

Equation (4.141) is substituted into Equation (4.140) to obtain

nF

sG
(sG)′S +

nF

Rθ
(pGR)′S +

1

sGρGR
div (nFsGρGRwGS) + βS(1− nF)T ′S + div x′S = 0. (4.142)

For an isothermal process, T ′S = 0 so that the above equation becomes

nF

sG
(sG)′S +

nF

Rθ
(pGR)′S +

1

sGρGR
div (nFsGρGRwGS) + div x′S = 0 (4.143)

Equation (4.143) is multiplied by sG to obtain the weak form of the balance of mass of the gas

phase as

GpGR =

∫
B

[ nF(sG)′S+
nFsG

Rθ
(pGR)′S+

1

ρGR
div (nFsGρGRwGS)+sG div x′S ]·δpGRdv = 0 (4.144)

Mapping to the reference configuration∫
B

div (nFsGρGRwGS) · δpGRdv =

∫
∂B
nFsGρGRwGS · n δpGRda

=

∫
∂B0

nFsGρGRwGS0 ·N δpGRdA =

∫
B0

Div (nFsGρGRwGS0) · δpGRdV
(4.145)

with nFsGwGS = nFsGwGS0NJSF
−T . Making use of Gauss’s theorem;

Div(nFsGρGRwGS0) · δpGR = Div(nFsGρGRwGS0δp
GR)−nFsGρGRwGS0 Grad δpGR (4.146)

and

∫
B0

Div(nFsGρGRwGS0δp
GR)dV =

∫
∂B0

nFsGρGRwGS0 ·N δpGRdA. (4.147)

Using div x′S = trDS, the weak form becomes

GpGR =

∫
B0

[ nF(sG)′S +
nFsG

Rθ
(pGR)′S] δpGRdV +

∫
∂B0

nFsGwGS0 ·N δpGRdA

−
∫
B0

nFsGρGRwGS0 Grad δpGRdV +

∫
B0

sG JS trDS δp
GRdV = 0.

(4.148)
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Substituting for the seepage velocity

nGwGS =
(nG)2

αwGS

[−grad pGR + ρGRb] (4.149)

into Equation (4.148) yields;

GpGR =

∫
B0

[ nF(sG)′S +
nFsG

Rθ
(pGR)′S] δpGRdV +

∫
∂B0

nFsGwGS0 ·N δpGRdA

+

∫
B0

(nG)2

αwGS

Grad pGRGrad δpGRdV −
∫
B0

(nG)2

αwGS

ρGRb Grad δpGRdV

+

∫
B0

sG JS trDS δp
GRdV = 0

(4.150)

which is rewritten as∫
B0

[ nF(sG)′S +
nFsG

Rθ
(pGR)′S] δpGRdV +

∫
B0

sG JS trDS δp
GRdV

+

∫
B0

(nG)2

αwGS

Grad pGRGrad δpGRdV =

∫
B0

(nG)2

αwGS

ρGRb Grad δpGRdV

−
∫
∂B0

nFsGwGS0 ·N δpGRdA.

(4.151)

From Equation (4.5) and Lewis and Schrefler [37], (sG)′S = −(sL)′S and

(sL)′S =
∂sL

∂pC
∂pC

∂t
= Cs(

∂pGR

∂t
− ∂pLR

∂t
) (4.152)

where Cs is the specific moisture content. Hence the final form of Equation (4.151) is

GpG =

∫
B0

[ −nFCs(
∂pGR

∂t
− ∂pLR

∂t
) +

nFsG

Rθ
(pGR)′S] δpGRdV +

∫
B0

sG JS trDS δp
GRdV

+

∫
B0

(nG)2

αwGS

Grad pGRGrad δpGRdV =

∫
B0

(nG)2

αwGS

ρGRb Grad δpGRdV

−
∫
∂B0

nFsGwGS0 ·N δpGRdA

(4.153)
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4.4.3 Weak form for the balance of mass for the pore liquid

The balance of mass for the liquid phase is given in Equation (4.19). Taking its material time

derivative with respect to the solid skeleton,

(ρL)′L = (ρL)′S + gradρL ·wLS (4.154)

and substituting this into Equation (4.19) gives

(ρL)′S + gradρL ·wLS + ρL div x′L = 0. (4.155)

Recall that ρL = nLρLR and nL = nFsL so that Equation (4.155) becomes

(nFsLρLR)′S + grad(nFsLρLR) ·wLS + (nFsLρLR) div x′L = 0 (4.156)

which is rewritten as

(nF)′Ss
LρLR+(sL)′Sn

FρLR+(ρLR)′S s
LnF+grad(nFsLρLR)·wLS+(nFsLρLR) div x′L = 0. (4.157)

Dividing through by sLρLR and substituting for div x′L = div (x′S + wLS) results in

(nF)′S +
nF

sL
(sL)′S +

nF

ρLR
(ρLR)′S +

1

sLρLR
grad(nFsLρLR) ·wLS +nF div (x′S +wLS) = 0. (4.158)

Summation of Equation (4.158) with Equation (4.138) to eliminate (nF)′S yields

nF

sL
(sL)′S +

nF

ρLR
(ρLR)′S +

1

sLρLR
grad (nFsLρLR) ·wLS + nF div (x′S + wLS)

+
1− nF

ρSR
(ρSR)′S + (1− nF) div x′S = 0

(4.159)

Using

grad (nFsLρLR) ·wLS = div (nFsLρLRwLS)− nFsLρLR div wLS,
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Equation (4.159) is expressed in the form

nF

sL
(sL)′S +

nF

ρLR
(ρLR)′S +

1

sLρLR
div (nFsLρLRwLS)− nFdiv wLS + nF div wLS

+
1− nF

ρSR
(ρSR)′S + div x′S = 0

(4.160)

and is simplified to become

nF

sL
(sL)′S +

nF

ρLR
(ρLR)′S +

1

sLρLR
div (nFsLρLRwLS) +

1− nF

ρSR
(ρSR)′S + div x′S = 0. (4.161)

The material time derivative of the incompressible solid density is given in Equation (4.141) and

that of the incompressible liquid density by

1

ρLR
(ρLR)′S =

1

KL
(pLR)′S − βLT ′S (4.162)

where KL is the bulk modulus of the liquid phase and βL is its coefficient of thermal expansion

[37]. Inserting these into Equation (4.161) yields

nF

sL
(sL)′S +

nF

KL
(pLR)′S−βLT ′S +

1

sLρLR
div (nFsLρLRwLS)+βS(1−nF)T ′S +div x′S = 0. (4.163)

For an isothermal process, T ′S = 0 so that Equation (4.163) becomes

nF

sL
(sL)′S +

nF

KL
(pLR)′S +

1

sLρLR
div (nFsLρLRwLS) + div x′S = 0. (4.164)

Multiplying Equation (4.164) by sL yields the weak formulation for the balance of mass of the pore

liquid as

GpC =

∫
B

[nF(sL)′S +
nFsL

KL
(pLR)′S +

1

ρLR
div (nFsLρLRwLS) + sLdiv x′S] · δpC dv = 0 (4.165)

Mapping to the reference configuration and making use of Gauss’s theorem as was done for the

weak form of the gas yields

GpC =

∫
B0

[nF(sL)′S +
nFsL

KL
(pLR)′S] · δpC dV +

∫
∂B0

nFsLwLS0 ·N δpCdA

−
∫
B0

nFsLwLS0Grad δpCdV +

∫
B0

sLJSdiv x′S δp
C dV = 0

(4.166)
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Substituting Equation (4.152) for the material time derivative of the liquid saturation degree in the

above equation yields

GpC =

∫
B0

[[nFCs(
∂pGR

∂t
− ∂pLR

∂t
) +

nFsL

KL
(pLR)′S] · δpC dV +

∫
∂B0

nFsLwLS0 ·N δpCdA

−
∫
B0

nFsLwLS0Grad δpCdV +

∫
B0

sLJSdiv x′S δp
C dV = 0

(4.167)

4.4.4 Weak form for the balance of mass for the solute

The mass balance for the solute is given in Equation (4.27) and its material time derivative with

respect to the solid skeleton by

(nLcLQ)′S + div (nLcLQwLQS) + nLcLQ div x′S − ρ̂
LQ
mol = 0 (4.168)

with

ρ̂LQmol =
ρ̂LQ

MQ
mol

= 0

and

jLQ = nLcLQwLQS (4.169)

as the diffusive flux. The weak form of the balance of mass for the solute is derived to be

GµLQ =

∫
B

[(nLcLQ)′S + div jLQ + nLcLQ div x′S] · δµLQ dv = 0 (4.170)

Mapping to the reference configuration∫
B

div jLQ dv =

∫
∂B

div jLQ · n da =

∫
∂B

jLQN JSF
T−1 dA0S =

∫
∂B

jLQ0 N dA0S

=

∫
B

Div jLQ0 dV0S

(4.171)

with

jLQ0 = jLQN JSF
T−1 = nLcLQwLQS0 (4.172)
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Applying Gauss’ theorem;

Div jLQ0 · δµLQ = Div jLQ0 δµLQ − jLQ0 ·Grad δµLQ (4.173)

and

∫
B0

Div jLQ0 δµLQ dV0S =

∫
∂B0

jLQ0 ·N δµLQ dA0S (4.174)

along with div x′S = trDS yields the weak form of the balance of mass for the solute as

GµLQ =−
∫
B0

jLQ0 ·Grad δµLQ dV0S +

∫
B0

nLcLQJS trDSδµ
LQ dV0S

+

∫
B0

(nLcLQ)′SJS δµ
LQ dV0S +

∫
∂B0

jLQ0 ·N δµLQ dA0S

(4.175)



5. Numerical treatment

5.1 Discretization

Implementation of the triphasic framework was performed using finite element code in the in-

house software SESKA. The spatial discretization made use of quadratic test functions for the

solid displacements and linear test functions for the capillary pressure and gas pressure yielding

first-order partial differential equations.

The Newmark1 method was chosen as the time integration scheme in the finite element approxi-

mation. It employs the extended mean value theorem to solve for displacements d̄n+1 and velocity

v̄n+1 at time tn+1 from the equation of motion as

d̄n+1 = d̃n+1 + ∆t2 β ān+1 (5.1)

v̄n+1 = ṽn+1 + γ ∆t ān+1 (5.2)

where ∆t is the time increment with

d̃n+1 = d̄n + ∆t v̄n +
∆t2

2
(1− 2β) ān (5.3)

ṽn+1 = v̄n + ∆t (1− γ) ān (5.4)

where ü = ān is the acceleration, u̇ = v̄n is the velocity and u = d̄n is the displacement at time

tn. For unconditional stability, the Newmark parameters were chosen to be γ = 1
2 and β = 1

4 [19].

1The Newmark method developed by Nathan Newmark in 1959 is a numerical integration scheme used to solve
differential equations typically in the modelling of dynamic systems.
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5.2 Simulation

The triphasic model excluding the solute concentration was implemented in SESKA. An attempt

was made to simulate the drainage of a column based on the leaking problem in Ehlers and Bluhm

[38]. The example presented here is academic in nature. The results demonstrate how the capillary,

gas and liquid pressures function in this preliminary model and demonstrate some of the challenges

encountered in its implementation thus far.

The material parameters chosen for the model are listed in Table 5.1.

Table 5.1: The material parameters were obtained from Ehlers and Bluhm [38].

Parameter Symbol Value

Lame constants
µS 5583 kN/m2

λS 8375 kN/m2

Solid density ρSR 2600 kg/m3

Gas density ρGR0 1.23 kg/m3

Liquid density ρLR 1000 kg/m3

Gas constants

RG 287.17 J/(kgK)

θ 283 K

p0 105 N/m2

Solid volume fraction nS0S 0.67

Pore volume fraction nF0F 0.33

Gravity g 10 m/s2

Intrinsic permeability k 1.2× 1014 m/s2

Liquid viscosity µLR 10−3 Ns/m2

Gas viscosity µGR 1.8× 10−5 Ns/m2

Permeability parameters

α 2× 10−4

j 2.3

h 1.5

p 5.5
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Figure 5.1: Problem definition showing the column dimensions and the boundary conditions
applied.

Figure 5.1 shows the geometry and the boundary conditions applied in the simulation. The column

had dimensions of 0.1 meter by 0.1 meter and a height of 1 meter. The bottom surface of the

column was fixed in all the displacement degrees of freedom. The capillary pressure was set to

pC = 20000MPa to induce a liquid saturation of sL = 0.0079 on this surface and on the top surface

of the column. The capillary pressure was ramped up to yield a decreasing liquid saturation towards

sL = 0.0000. Applying a saturation degree of sL = 0.0 instantaneously produced numerical errors

assumed to arise from the system becoming biphasic on these boundaries. No traction was applied.

The solid saturation point was set at sL = 0.0 as this was not specified in the reference.

The results of the simulation are presented in the next sections.

5.3 Results and discussion

Figure 5.2 shows the progression of the liquid saturation sL during simulation of a leaking problem

in Ehlers and Bluhm [38].
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Figure 5.2: Development of liquid saturation for leaking problem in Ehlers and Bluhm [38]

Figure 5.3: Liquid saturation at 0.001s and 0.59s
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Figure 5.3 shows the liquid saturation (sh0 = sL) at the beginning and at the termination of the

simulation at 0.59s of the problem time. Figures 5.4 and 5.5 show the seepage velocities obtained

by Ehlers and Bluhm [38] and our model respectively.

Figure 5.4: Seepage velocity vs. time obtained by Ehlers and Bluhm [38] at the bottom surface
of the column

Figure 5.5: A graph showing the variation of the seepage velocity vs. time obtained from the
simulation at the bottom surface of the column

A visual comparison between Figures 5.2, 5.3, 5.4 and 5.5 shows major discrepancies between the

results obtained from the model and the expected results. Whereas a vertical gradation of the

liquid saturation is observed in Figure 5.2, Figure 5.3 shows the liquid saturation to be radially

decreasing from the center of the column outwards. This infers that the liquid is seeping out of
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Figure 5.6: A graph showing the variation of the liquid pressure gradient vs. time obtained from
the simulation at the bottom surface of the column

the column from all surfaces and is not the right behaviour. This may be due to time-scale or

unit conversion errors made in the input file. It was expected that application of these boundary

conditions as done in Ehlers and Bluhm [38] would yield a gravity drainage of the column resulting

in the liquid saturation variation observed in Figure 5.2.

Comparison of Figures 5.4 and 5.5 shows that although the graph of the seepage velocity at the

bottom surface of the column in Ehlers and Bluhm [38] was a smooth curve with a decreasing slope,

the same graph obtained from the model is an oscillating curve with an increasing slope at the later

stages of the simulation. The oscillations are a typical result of derived quantities in multiphase

modelling and are usually smoothed by applying ramped up or down boundary conditions instead

of constant boundary conditions. Although the capillary pressure boundary condition was ramped

up, this was did not eliminate the oscillations as observed in Figure 5.5.

Referring to Equation (4.108) the seepage velocity of the pore liquid depends on the Darcy coef-

ficient, the gradient of the liquid pressure and the body forces. No body forces were applied in

this example and therefore the seepage velocity is dependent only on the Darcy coefficient and the

liquid pressure gradient. The increase in the liquid seepage velocity is attributed to the ramped

up capillary pressure boundary condition applied to this surface and the upper surface of the col-

umn. This boundary condition induced an increasing liquid pressure gradient and resulted in an

increasing outflow of liquid.



Chapter 5. Numerical treatment 85

Oscillations in the results of the liquid pressure gradient were observed and are shown in Figure

5.6. The liquid pressure gradient was calculated as the difference between the gas pressure gradient

and the capillary pressure gradient. The gas pressure gradient showed oscillations identical to those

of the liquid pressure gradient and was identified to be the cause of the oscillations in the liquid

pressure gradient. These in turn produced oscillations in the liquid seepage velocity. From Figure

5.3, the gas is present in the column at saturations sG > 0.87 (sG = 1 − sL). The gas pressure

gradient is a derived quantity and its oscillations were assumed to arise from the lack of gas pressure

boundary conditions.

From the peculiar results presented in this work, it is evident that the model equations were not

implemented correctly in SESKA. Due to the limited time-frame of the study, this matter could not

be investigated further. Additional work is required on the implementation of the proposed model

in SESKA to include the solute transport. An investigation into the influence of various boundary

conditions and input parameters on the model behaviour needs to be conducted so that these can

be accounted for in the verification and calibration of the model. It is recommended that a simpler

example be used for verification of the model for the purpose of demonstrating the functionality of

the model.



6. Conclusions and future work

6.1 Conclusions

The degradation of the protective oxide layer on reinforcing steel in concrete initiates corrosion.

Corrosion products occupy a larger volume than the corroding steel and therefore create tensile

stresses in the limited space of the steel-concrete interface. Studies have shown that not all the

corrosion products contribute to these tensile stresses. A proportion of the corrosion products

penetrates into the capillary pores in the porous zone of concrete adjacent to the steel. Although

the mechanism by which the penetration occurs is not well understood, it has been shown that the

major source of discrepancies between time-to-cracking service life models for reinforced concrete

and experimental results is not sufficiently addressing this phenomena in the modelling effort.

Recent studies have endeavoured to account for the penetration of corrosion products in time-

to-cracking concrete models. Each study reviewed utilised a different method for calculating the

amount of corrosion products penetrating into the concrete pores and for calculating the size of the

CAR. With so many varied approaches, both the amount of corrosion products penetrating into

the concrete and the size of the CAR were often either underestimated or overestimated.

This work aimed to develop a theoretical framework for a numerical model to simulate the pen-

etration of corrosion products into concrete pores using the Theory of Porous Media. Therefore

a theoretical triphasic model with a miscible component based on TPM was derived. The three

phases included in the model are the solid (concrete), liquid (pore solution) and gas (oxygen)

phases. The soluble ion (iron III chloride (FeCl−3 )) was added as a concentration in the liquid

phase. The additional degrees of freedom namely the capillary pressure, the gas pressure and the

chemical potential of the solute allowed coupling between the displacement fields and fluid flow.

An attempt was made to implement the triphasic TPM model excluding the solute in the in-

house software SESKA. The leaking of a soil column was simulated as an academic example to
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demonstrate the functionality of the additional degrees of freedom in the model. The results

obtained were inconsistent with the reference example. Due to the limited time-frame of this work,

the inconsistencies between the reference example and the model results could not be addressed

at this stage. The model presented and the results of the implementation cannot be conclusively

validated until the numerical implementation is functioning correctly. This is the initial contribution

towards the development of a multiphasic material model for the deterioration of reinforced concrete

subjected to chloride-induced corrosion in SESKA.

6.2 Future work

The model presented needs to be refined, calibrated and validated for reinforced concrete. This may

be done using experimental data and model results on the wetting and drying of reinforced concrete

in which the relationship between capillary pressure and saturation is well documented. The most

important parameters to note during calibration are the intrinsic permeability of the material and

the relative permeability relationships as associated with the chosen sorption-desorption isotherm.

Following validation of the existing model, the solute phase will need to be implemented, calibrated

and validated in SESKA. Although there is very little experimental data on the penetration of

iron III chloride into the concrete pores, any ion may be used to demonstrate the functionality of

the model. It is recommended that chloride ingress experimental results be used for this purpose

instead, as the mechanisms by which both processes occur are similar. Alternatively, experimental

tests may be performed in conjunction with the computational simulation.

The formulation presented within this work does not include mass exchange between the con-

stituents of the porous medium. However, to realistically model the the stresses due to precipitation

of iron III chloride within the concrete pore structure, mass exchange between the solute, liquid

and solid phases will have to be introduced within the model.

To extend this model to a comprehensive time-to-cracking service life model for reinforced concrete

subjected to chloride-induced corrosion, additional modelling effort will be required. The model

presented in this work may be adapted for chloride ion diffusion into concrete for corrosion initiation

and propagation, and for the precipitation of corrosion products within the concrete pores by the

addition of mass supply and exchange terms. To simulate cracking of concrete, it is recommended

that fracture mechanics be used to supplement the TPM model as was done by Ehlers and Luo

[66].



A. Appendix: Linearizations

The linerization of the triphasic material model excluding the solute concentration is presented.

The balance equations are linearized according to

∆G =
∂G

∂uS
∆uS +

∂G

∂pG
∆pG +

∂G

∂pC
∆pC

A.1 Balance of momentum

The balance of linear momentum for the mixture is given by

div T + ρb = 0 (A.1)

where

T = TS + TL + TLQ + TG (A.2)

ρ = (1− nF ) ρS + (nF sL) ρL + (nF sG) ρG (A.3)

and b is the external body force. We introduce the variational formulation of the above equation

as

GuS =

∫
B

(div T + ρ̇b) · δuS dv (A.4)

and proceed to map to the reference configuration

∫
B

div T dv =

∫
∂B

Tn da =

∫
∂B

Tn JS F−TdA0S =

∫
∂B

PN dA0S =

∫
∂B

Div P dV0S (A.5)
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Using

Div P · δuS = Pij,j δui = (Pij δui)j − Pij δui,j (A.6)

and P N = t (A.7)

we have

∫
B0

Pijδui,j dV0S =

∫
∂B0

Pijδui NjdA0S =

∫
∂B0

tiδui dA0S (A.8)

giving

GuS =

∫
B0

P ·Grad δuS dV0S +

∫
B0

JS ρ b · δuS dV0S −
∫
∂B0

t · δuS dA0S = 0 (A.9)

Using the variation of the deformation gradient

δFS = δ(Grad uS + I) = Grad δuS (A.10)

and the second Piola-Kirchhoff stress

P = FSS (A.11)

we have

P ·Grad δuS = FSS · δFS . (A.12)

With

FijSjkδFik = SjkFijδFik = δFTSFS · S (A.13)

and

δES =
1

2
δ(FTSF) =

1

2
δFTSFS +

1

2
FTS δFS (A.14)

δES =
1

2

[
δFTSFS + (δFTSFS)T

]
(A.15)

δES = sym δFTSFS (A.16)
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we have

P ·Grad δuS = S · δES (A.17)

so that we can express the weak form of the balance of momentum for the mixture as

GuS =

∫
B0

S · δES δuS dV0S +

∫
B0

JS ρ b · δuS dV0S −
∫
∂B0

t · δuS dA0S = 0 (A.18)

Substituting for

δES =
1

2
δCS (A.19)

into equation A.18, the final expression of the weak form of the balance of momentum for the

mixture is given by

GuS =
1

2

∫
B0

S · δC dV0S +

∫
B0

JS ρ b · δuS dV0S −
∫
∂B0

t · δuS dA0S = 0 (A.20)

Linearization of the first term

1

2
∆

∫
B0

S · δE dV0S =
1

2

∫
B0

∆S · δC dV0S +
1

2

∫
B0

S ·∆δC dV0S (A.21)

Linearization of the second Piola-Kirchhoff stress tensor, S with respect to the Cauchy stress C;

S = SE − JSλC−1 (A.22)

∆S = ∆SE −∆JSλC
−1 − JS∆λC−1 − JSλ∆C−1 (A.23)

where λ = pS = sLpL + sGpG. (A.24)

SE = µS(I−C−1) + λS logJS C−1 (A.25)

∆SE =
∂SE

∂C
∆C =

[
−µS ∂C

−1

∂C
+ λS

∂ logJS
∂C

C−1 + λS logJS
∂C−1

∂C

]
∆C (A.26)

Evaluating

∂C−1ij
∂Con

= −C−1io C
−1
jn (A.27)

∂ logJS
∂Con

=
1

2
C−1on (A.28)

∂ JS
∂Con

=
1

2
JSC

−1
on (A.29)
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yields

∂SEij
∂Con

∆Con =

[
−C−1io C

−1
jn (λS logJS − µS) +

1

2
λSC−1ij C

−1
on

]
∆Con (A.30)

Therefore

∂Sij
∂Con

∆Con =[−C−1io C
−1
jn (λS logJS − µS) +

1

2
λSC−1ij C

−1
on −

1

2
λC−1ij JS C

−1
on

+ JSλC
−1
io C

−1
jn ]∆Con

(A.31)

Substituting for

∆Con = 2Fko∆Fkn (A.32)

into equation A.31 yields

∂Sij
∂Con

∆Con =− C−1io C
−1
jn (λS logJS − µS) 2Fko∆Fkn

+
1

2
λSC−1ij C

−1
on 2Fko∆Fkn

− 1

2
λC−1ij JS C

−1
on 2Fko∆Fkn

+ JSλC
−1
io C

−1
jn 2Fko∆Fkn

(A.33)

Linearization of the second Piola-Kirchhoff stress tensor, S with respect to the pore pressure, λ

∂S

∂λ
∆λ = ∆(−JSλC−1)∆λ (A.34)

λ = pS = sLpL + sGpG (A.35)

pS = sL(pG − pC) + sGpG (A.36)

pS = pG(sL + sG)− sLpC (A.37)

pS = pG − sLpC (A.38)

Therefore

∂Sij
∂ λ

∆λ =
∂Sij
∂ pG

∆pG +
∂Sij
∂ pC

∆pC (A.39)

∂Sij
∂ pG

∆pG = −JS C−1ij ∆pG (A.40)

∂Sij
∂ pC

∆pC = sLJS C
−1
ij ∆pC (A.41)
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Hence

∂S

∂λ
∆λ = sLJS C

−1
ij ∆pC − JS C−1ij ∆pG (A.42)

and ∫
B0

∆S · δC dV0S =

∫
B0

−C−1io C
−1
jn (λS logJS − µS) 2FkoδFki dV0S∆Fkn

+

∫
B0

1

2
λSC−1ij C

−1
on 2FkoδFki dV0S∆Fkn

−
∫
B0

1

2
λC−1ij JS C

−1
on 2FkoδFki dV0S∆Fkn

+

∫
B0

JSλC
−1
io C

−1
jn 2FkoδFki dV0S∆Fkn

+

∫
B0

sLJS C
−1
ij · δCij dV0S∆pC

− 1

2

∫
B0

JS C
−1
ij · δCij dV0S∆pG

(A.43)

Linearization of δC

Cij = FkiFkj (A.44)

δCij = δFkiFkj + FkiδFkj (A.45)

δCij = 2δFkiFkj (A.46)

∆δCij = δFki∆Fkj + ∆FkiδFkj (A.47)

∆δCij = 2δFki∆Fkj (A.48)

Therefore

1

2

∫
B0

Sij ·∆δCij dV0S =
1

2

∫
B0

Sij2δFki dV0S∆Fkj =

∫
B0

SijδFki dV0S∆Fkj (A.49)

Linearization of the second term

∆

∫
B0

JS ρ b · δuS dV0S =

∫
B0

∆JS ρ b · δuS dV0S +

∫
B0

JS ∆ρ b · δuS dV0S (A.50)

Linearization of the Jacobian, JS with respect to the deformation gradient, F

∂ JS
∂ Fon

∆Fon = JS F
−1
on ∆Fon (A.51)
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Linearization of the total density ρ with respect to the gas pressure pG

ρ = nSρSR + nF sLρLR + nF sGρGR (A.52)

∂ρ

∂pG
∆pG =

∂ρ

∂ρGR
∂ρGR

∂pGR
∆pG (A.53)

∂ρ

∂ρGR
= nF sG (A.54)

ρGR =
pG

Rθ
(A.55)

∂ρGR

∂pGR
=

1

Rθ
(A.56)

Therefore
∂ρ

∂pG
∆pG =

nF sG

Rθ
∆pG (A.57)

The specific moisture content ∂sL

∂pC
is given by

∂sL

∂pC
=

(
−1

pC

)
jh
[(
αpC

)j (
1 + (αpC)j

)]−h−1
, (A.58)

and linearization of the Specific Moisture content with respect to the capillary pressure pC gives

∂

∂pC

(
∂sL

∂pC

)
∆pC =

[
1

(pC)2
jh
(
αpC

)j (
1 +

(
αpC

)j)−h−2 (
j
(
h
(
αpC

)j − 1
)

+ 1 +
(
αpC

)j)]
∆pC .

(A.59)

Linearization of the total density ρ with respect to the capillary pressure pC

ρ = nSρSR + nF sLρLR + nF (1− sL)ρGR (A.60)

∂ρ

∂pC
∆pC =

∂ρ

∂sL
∂sL

∂pC
∆pC (A.61)

∂ρ

∂sL
= nFρLR − nFρGR (A.62)

Therefore

∂ρ

∂pC
∆pC = (nFρLR − nFρGR)

∂sL

∂pC
∆pC . (A.63)
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Hence

∆

∫
B0

JS ρ b · δuS dV0S =

∫
B0

JS F
−1
on ρ b · δuS dV0S∆Fon

+

∫
B0

JS
nF sG

Rθ
b · δuS dV0S∆pG

+

∫
B0

JS (nFρLR − nFρGR)
∂sL

∂pC
b · δuS dV0S∆pC

(A.64)

The linearized balance of momentum of the mixture is given by

∆GuS =
∑
I

∑
J

δd(uS)I
∫
B0

∂NI

∂Xi
C−1io C

−1
jn (−λS logJS + µS) 2FkjFko

∂NJ

∂Xj
dV0S∆d(uS)J

+
∑
I

∑
J

δd(uS)I
∫
B0

∂NI

∂Xi
λSC−1ij C

−1
on FkjFko

∂NJ

∂Xj
dV0S∆d(uS)J

−
∑
I

∑
J

δd(uS)I
∫
B0

∂NI

∂Xi
λC−1ij JS C

−1
on FkjFko

∂NJ

∂Xj
dV0S∆d(uS)J

+
∑
I

∑
J

δd(uS)I
∫
B0

∂NI

∂Xi
JSλC

−1
io C

−1
jn 2FkjFko

∂NJ

∂Xj
dV0S∆d(uS)J

+
∑
I

∑
J

δd(uS)I
∫
B0

∂NI

∂Xi
sLJS C

−1
ij Fkj N

J dV0S∆d(pC)J

−
∑
I

∑
J

δd(uS)I
∫
B0

∂NI

∂Xi
JS C

−1
ij Fkj N

J dV0S∆d(pG)J

+
∑
I

∑
J

δd(uS)I
∫
B0

∂NI

∂Xi
JS F

−1
on ρ b

∂NJ

∂Xn
dV0S∆d(uS)J

+
∑
I

∑
J

δd(uS)I
∫
B0

∂NI

∂Xi
JS (nFρL − nFρG)

∂sL

∂pC
b NJ dV0S∆d(pC)J

+
∑
I

∑
J

δd(uS)I
∫
B0

∂NI

∂Xi
JS

nF sG

Rθ
b NJ dV0S∆d(pG)J

(A.65)

A.2 Balance of mass for the liquid phase

From the balance of mass for the liquid phase,

(ρL)′L + ρLdiv x′L = 0 (A.66)

Taking the material time derivative of the liquid density with respect to the solid skeleton

(ρL)′S = (ρL)′L − grad ρL ·wLS , (A.67)
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and substituting this into equation A.66 yields

(ρL)′S + grad ρL ·wLS + ρLdiv x′L = 0 (A.68)

Recall that ρL = nLρLR and nL = nF sL so that equation A.68 becomes

(nF sLρLR)′S + grad nF sLρLR ·wLS + nF sLρLRdiv x′L = 0 (A.69)

(nF sL)(ρLR)′S + (nFρLR)(sL)′S + (sLρLR)(nF )′S + grad nF sLρLR ·wLS

+ nF sLρLRdiv x′L = 0
(A.70)

Dividing through by sLρLR and substituting for div x′L = div (x′S −w′LS);

nF

ρLR
(ρLR)′S +

nF

sL
(sL)′S + (nF )′S +

1

sLρLR
grad nF sLρLR ·wLS

+ nFdiv x′S + nFdiv w′LS = 0

(A.71)

Summation of equation A.71 with the balance of mass for the solid phase to eliminate the (nF )′S ;

nF

ρLR
(ρLR)′S +

nF

sL
(sL)′S +

1

sLρLR
grad nF sLρLR ·wLS + nFdiv x′S + nFdiv w′LS

+
1− nF

ρSR
(ρSR)′S + divx′S − nFdiv x′S = 0

(A.72)

Using grad nF sLρLR ·wLS = div(nF sLρLRwLS)− nF sLρLRdivwLS we get;

nF

ρLR
(ρLR)′S +

nF

sL
(sL)′S +

1

sLρLR
div(nF sLρLRwLS)− nF divwLS + nFdiv x′S

+ nFdiv w′LS +
1− nF

ρSR
(ρSR)′S + divx′S − nFdiv x′S = 0

(A.73)

which yields

nF

ρLR
(ρLR)′S +

nF

sL
(sL)′S +

1

sLρLR
div(nF sLρLRwLS) +

1− nF

(ρSR)
(ρSR)′S

+ div x′S = 0

(A.74)

The material time derivative of the solid density in the incompressible case is given by

1

ρSR
(ρSR)′S =

1

1− nF
βS (1− nF )T ′S (A.75)
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and for the liquid by

1

ρLR
(ρLR)′S =

1

KL
(pL)′S − βST ′S . (A.76)

Substituting these into equation A.74

nF

KL
(pL)′S − nF βST

′
S +

nF

sL
(sL)′S +

1

sLρLR
div(nF sLρLRwLS) + βS (1− nF )T ′S

+ div x′S = 0

(A.77)

For an isothermal process, T ′S = 0;

nF

KL
(pL)′S +

nF

sL
(sL)′S +

1

sLρLR
div(nF sLρLRwLS) + div x′S = 0 (A.78)

Multiplying through by sL yields

nF sL

KL
(pL)′S + nF (sL)′S +

1

ρLR
div(nF sLρLRwLS) +

1

sL
div x′S = 0 (A.79)

Introducing the variation of capillary pressure δpC and integrating over the differential volume gives

the weak formulation of the balance of mass for the liquid phase as

GpC =

∫
B0

[
nF sL

KL
(pL)′S + nF (sL)′S +

1

ρLR
div(nF sLρLRwLS) +

1

sL
div x′S

]
δpC dv = 0 (A.80)

Mapping to the reference configuration using the transformation equations

da = JSF
−T
S dA0S (A.81)

dv = JS dV0S (A.82)

yields

GpC =

∫
B0

(
nF sL

KL
(pL)′S + nF (sL)′S +

1

ρLR
div(nF sLρLRwLS)

+
1

sL
div x′S)δpC JS dV0S = 0

(A.83)
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Using ∫
B

div(nF sLρLR ·wLS) δpCdv =

∫
∂B
nF sLρLRwLS · n δpCda

=

∫
∂B0

nF sLρLRwLS0 ·N δpCdA0 =

∫
B0

Div(nF sLρLR ·wLS0) δpCdV0S

(A.84)

where nF sL wLS0 = JS n
F sL wLSF

−T
S and Div x′S = trDS . Using Gauss’s theorem;

Div (nF sLρLR) · δpC = Div (nF sLρLRδpC)− nF sLρLRwLS0 Grad δpC

and

∫
B0

Div (nF sLρLRδpC) dV0S =

∫
∂B0

nF sLρLRwLS0 ·N δpC dA0S

we can re-write equation A.83 as

GpC =

∫
B0

nF (sL)′SJS δp
C dV0S +

∫
B0

nF sL

KL
(pLR)′SJS δp

C dV0S

+

∫
∂B0

nF sLwLS0 ·N δpC dA0S −
∫
B0

nF sLwLS0 Grad δpC dV0S

+

∫
B0

sLJS trDS δp
C dV0S = 0

(A.85)

Substituting for the filter velocity nF sLwLS = kkrL

µL
(−GradpLR + ρLg) into A.85;

GpC =

∫
B0

nF (sL)′SJS δp
C dV0S +

∫
B0

nF sL

KL
(pLR)′SJS δp

C dV0S∫
B0

nF sLwLS0 ·N δpC dA0S −
∫
B0

[
kkrL

µL
(−Grad pLR + ρLg)]JSF

−T
S Grad δpC dV0S

+

∫
B0

sLJS trDS δp
C dV0S = 0

(A.86)

Hence

GpC =

∫
B0

nF (sL)′SJS δp
C dV0S +

∫
B0

nF sL

KL
(pLR)′SJS δp

C dV0S +

∫
B0

nF sLwLS0 ·N δpC dA0S

+

∫
B0

kkrL

µL
Grad pLRJSF

−T
S Grad δpC dV0S −

∫
B0

kkrL

µL
ρLg)JSF

−T
S Grad δpC dV0S

+

∫
B0

sLJS trDS δp
C dV0S = 0

(A.87)



Appendix: Linearizations of the weak forms 98

Introducing the constitutive law

(sL)′S =
∂sL

∂pC
∂pC

∂t
, (A.88)

equation A.87 becomes

GpC =

∫
B0

nF
∂sL

∂pC
∂pC

∂t
JS δp

C dV0S +

∫
B0

nF sL

KL
(pLR)′SJS δp

C dV0S +

∫
B0

nF sLwLS0 ·N δpC dA0S

+

∫
B0

kkrL

µL
Grad pLRJSF

−T
S Grad δpC dV0S −

∫
B0

kkrL

µL
ρLgJSF

−T
S Grad δpC dV0S

+

∫
B0

sLJS trDS δp
C dV0S = 0

(A.89)

where ∂sL

∂pC
is the Specific Moisture content as previously defined. The relationship pL = pG− pC is

employed in the linearizations.
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The linearized balance of mass for the liquid phase is given by

∆GpC =
∑
I

∑
J

δd(pC)I
∫
B0

NInF
∂

∂pC
(
∂sL

∂pC
)(pC)′JS NJ dV0S ∆d(pC)J

+
∑
I

∑
J

δd(pC)I
∫
B0

NInF
∂sL

∂pC
α

β∆t
JS NJ dV0S ∆d(pC)J

+
∑
I

∑
J

δd(pC)I
∫
B0

NInF
∂sL

∂pC
(pC)′JS F−1no

∂NJ

∂Xn
dV0S ∆d(uS)J

+
∑
I

∑
J

δd(pC)I
∫
B0

NI n
F

KL

∂sL

∂pC
[(pG)′S − (pC)′S ] JS NJ dV0S ∆d(pC)J

+
∑
I

∑
J

δd(pC)I
∫
B0

NI n
F sL

KL

α

β∆t
JS NJ dV0S ∆d(pG)J

−
∑
I

∑
J

δd(pC)I
∫
B0

NI n
F sL

KL

α

β∆t
JS NJ dV0S ∆d(pC)J

+
∑
I

∑
J

δd(pC)I
∫
B0

NI n
F sL

KL
[(pG)′S − (pC)′S ] JS F−1no NJ dV0S ∆d(uS)J

+
∑
I

∑
J

δd(pC)I
∫
B0

NI ∂s
L

∂pC
JS (ES)′ij(CS)−1ij NJ dV0S ∆d(pC)J

+
∑
I

∑
J

δd(pC)I
∫
B0

NIsLJS F−1no (ES)′ij(CS)−1ij
∂NJ

∂Xn
dV0S ∆d(uS)J

+
∑
I

∑
J

δd(pC)I
∫
B0

NIsLJS F−1no
α

β∆t

∂NJ

∂Xn
dV0S ∆d(uS)J

−
∑
I

∑
J

δd(pC)I
∫
B0

1

2
NIsLJS (F−1io F−1jn + F−1in F−1jo )Ḟik

∂NJ

∂Xn
dV0S ∆d(uS)J

+
∑
I

∑
J

δd(pC)I
∫
B0

∂NI

∂Xj

kkrL

µL
JS F−Tij

∂NJ

∂Xn
dV0S ∆d(pG)J

+
∑
I

∑
J

δd(pC)I
∫
B0

∂NI

∂Xj

kkrL

µL
JS F−1noF

−T
ij GradpL

∂NJ

∂Xn
dV0S ∆d(uS)J

−
∑
I

∑
J

δd(pC)I
∫
B0

∂NI

∂Xj

kkrL

µL
JS F−1jo F

−1
ni GradpL

∂NJ

∂Xn
dV0S ∆d(uS)J

−
∑
I

∑
J

δd(pC)I
∫
B0

∂NI

∂Xj

kkrL

µL
JS F−Tij

∂NJ

∂Xn
dV0S ∆d(pC)J

+
∑
I

∑
J

δd(pC)I
∫
B0

∂NI

∂Xj

k

µL
∂krL

∂sL
∂sL

∂pC
JS F−Tij GradpLNJ dV0S ∆d(pC)J

−
∑
I

∑
J

δd(pC)I
∫
B0

NI ∂s
L

∂pC
∂pC

∂t
F−1no

∂NJ

∂Xn
dV0S ∆d(uS)J

−
∑
I

∑
J

δd(pC)I
∫
B0

NI s
L

KL
(pL)′S F−1no

∂NJ

∂Xn
dV0S ∆d(uS)J

(A.90)
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A.3 Balance of mass for the gas phase

From the balance of mass of the gas phase

(ρG)′G + ρG div x′G = 0 (A.91)

Taking it’s material time derivative with respect to the solid skeleton

(ρG)′G = (ρG)′S + grad ρG ·wGS (A.92)

and substituting this into equation A.91;

(ρG)′S + grad ρG ·wGS + ρG div x′G = 0 (A.93)

Recall that ρG = nGρGR and nG = nF sG so that equation A.93 becomes

(nF sGρGR)′S + grad (nF sGρGR) ·wGS + (nF sGρGR) div x′G = 0 (A.94)

Expanding equation A.94;

(nF sG)(ρGR)′S+(nFρGR)(sG)′S+(sGρGR)(nF )′S+grad (nF sGρGR) ·wGS+(nF sGρGR) div x′G = 0

(A.95)

Dividing through by sGρGR and substituting for div x′G = div (x′S + wGS);

nF

ρGR
(ρGR)′S +

nF

sG
(sG)′S + (nF )′S +

1

sGρGR
grad (nF sGρGR) ·wGS

+ nF div (x′S + wGS) = 0

(A.96)

Summation of equation A.96 with the balance of mass for the solid skeleton to eliminate (nF )′S ;

nF

ρGR
(ρGR)′S +

nF

sG
(sG)′S +

1

sGρGR
grad (nF sGρGR) ·wGS + nF div x′S

+ nF div wGS +
1− nF

ρSR
(ρSR)′S + div x′S − nF div x′S = 0

(A.97)
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Using grad (nF sFρGR) ·wGS = div (nF sFρGRwGS)− (nF sFρGR)div wGS we get;

nF

ρGR
(ρGR)′S +

nF

sG
(sG)′S +

1

sGρGR
div (nF sFρGRwGS)− nFdiv wGS

+ nF div x′S + nF div wGS +
1− nF

ρSR
(ρSR)′S + div x′S − nF div x′S = 0

(A.98)

which yields

nF

ρGR
(ρGR)′S +

nF

sG
(sG)′S +

1

sGρGR
div (nF sFρGRwGS) +

1− nF

ρSR
(ρSR)′S + div x′S = 0 (A.99)

The material time derivative of the solid density in the incompressible case is given in equation

A.75 and for the gas phase is given by

(ρGR)′S =
1

Rθ
(pG)′S (A.100)

Substituting these into equation A.99;

nF

ρGRRθ
(pG)′S +

nF

sG
(sG)′S +

1

sGρGR
div (nF sFρGRwGS) + βS (1− nF )T ′S + div x′S = 0 (A.101)

For an isothermal process, T ′S = 0 so that equation A.101 becomes

nF

ρGRRθ
(pG)′S +

nF

sG
(sG)′S +

1

sGρGR
div (nF sFρGRwGS) + div x′S = 0 (A.102)

Multiplying through by sG;

nF sG

ρGRRθ
(pG)′S + nF (sG)′S +

1

ρGR
div (nF sFρGRwGS) + sGdiv x′S = 0 (A.103)

Hence the weak form of the balance of mass of the gas phase is given by

GpG =

∫
B

[
nF sG

ρGRRθ
(pG)′S + nF (sG)′S +

1

ρGR
div (nF sFρGRwGS) + sGdiv x′S

]
δpG dv = 0 (A.104)

Mapping to the reference configuration equation A.81

GpG =

∫
B0

[
nF sG

ρGRRθ
(pG)′S + nF (sG)′S +

1

ρGR
div (nF sFρGRwGS)

+ sGdiv x′S ] δpG JSdV = 0

(A.105)
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and making use of the relationship in A.84 and Gauss’ theorem we obtain;

GpG =

∫
B0

nF sG

ρGRθ
(pG)′S δp

G dV0S +

∫
B0

nF (sG)′SJS δp
G dV0S +

∫
B0

nF sGwGS ·N δpG dA0S

−
∫
B0

nF sGwGS Grad δpG dV0S +

∫
B0

sGJS trDS δp
G dV0S = 0

(A.106)

Substituting for the filter velocity nF sGwGS = kkrG

µG
(−Grad pG + ρGg) into the above equation

yields

GpG =

∫
B0

nF sG

ρGRθ
(pG)′S δp

G dV0S +

∫
B0

nF (sG)′SJS δp
G dV0S +

∫
B0

nF sGwGS ·N δpG dA0S

−
∫
B0

kkrG

µG
(−Grad pG + ρGg) Grad δpG dV0S +

∫
B0

sGJS trDS δp
G dV0S = 0

(A.107)

which may be re-arranged to give

GpG =

∫
B0

nF sG

ρGRθ
(pG)′S δp

G dV0S +

∫
B0

nF (sG)′SJS δp
G dV0S +

∫
B0

nF sGwGS ·N δpG dA0S

+

∫
B0

kkrG

µG
Grad pG Grad δpG dV0S −

∫
B0

kkrG

µG
ρGg Grad δpG dV0S

+

∫
B0

sGJS trDS δp
G dV0S = 0

(A.108)

Using sG = 1 − sL and (sG)′S = −(sL)′S and making use of the constitutive law given in A.88, we

obtain

GpG =

∫
B0

nF sG

ρGRθ
(pG)′S δp

G dV0S −
∫
B0

nF
∂sL

∂pC
∂pC

∂t
JS δp

G dV0S +

∫
B0

nF sGwGS ·N δpG dA0S

+

∫
B0

kkrG

µG
Grad pG Grad δpG dV0S −

∫
B0

kkrG

µG
ρGg Grad δpG dV0S

+

∫
B0

sGJS trDS δp
G dV0S = 0

(A.109)
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The linearized balance of mass of the gas phase is given by

∆GpG = −
∑
I

∑
J

δd(pG)I
∫
B0

NInF
∂

∂pC
(
∂sL

∂pc
)(pC)′ JS NJdV0S ∆d(pC)J

−
∑
I

∑
J

δd(pG)I
∫
B0

NInF
∂sL

∂pc
α

β∆t
JS NJdV0S ∆d(pC)J

−
∑
I

∑
J

δd(pG)I
∫
B0

NInF
∂sL

∂pc
(pC)′ JSF

−1
no

∂NJ

∂Xn
dV0S ∆d(uS)J

−
∑
I

∑
J

δd(pG)I
∫
B0

NI nF

ρGRθ
(pG)′S

∂sL

∂pC
JS NJdV0S ∆d(pC)J

+
∑
I

∑
J

δd(pG)I
∫
B0

NI nF

ρGRθ

α

β∆t
JS NJdV0S ∆d(pG)J

−
∑
I

∑
J

δd(pG)I
∫
B0

NI n
F sF

Rθ
(pG)′S

(ρG)−2

Rθ
JS NJdV0S ∆d(pG)J

+
∑
I

∑
J

δd(pG)I
∫
B0

NI n
F sG

ρGRθ
(pG)′S JS F−1no

∂NJ

∂Xn
dV0S ∆d(uS)J

−
∑
I

∑
J

δd(pG)I
∫
B0

NI ∂s
L

∂pC
JS (ES)′ij(CS)−1ij NJdV0S ∆d(pC)J

+
∑
I

∑
J

δd(pG)I
∫
B0

NIsG JSF
−1
no (ES)′ij(CS)−1ij

∂NJ

∂Xn
dV0S ∆d(uS)J

+
∑
I

∑
J

δd(pG)I
∫
B0

NIsG JSF
−1
no

α

β∆t

∂NJ

∂Xn
dV0S ∆d(uS)J

−
∑
I

∑
J

δd(pG)I
∫
B0

1

2
NIsG JS(F−1io F−1jn + F−1in F−1jo )Ḟij

∂NJ

∂Xn
dV0S ∆d(uS)J

+
∑
I

∑
J

δd(pG)I
∫
B0

∂NI

∂Xj

kkrL

µG
JS F−Tij

∂NJ

∂Xn
dV0S ∆d(pG)J

+
∑
I

∑
J

δd(pG)I
∫
B0

∂NI

∂Xj

kkrL

µG
JS F−1noF

−T
ij GradpG

∂NJ

∂Xn
dV0S ∆d(uS)J

−
∑
I

∑
J

δd(pG)I
∫
B0

∂NI

∂Xj

kkrL

µG
JS F−1jo F

−1
ni GradpG

∂NJ

∂Xn
dV0S ∆d(uS)J

+
∑
I

∑
J

δd(pG)I
∫
B0

∂NI

∂Xj

k

µG
∂krG

∂sL
∂sL

∂pC
JS F−Tij GradpG

∂NJ

∂Xn
dV0S ∆d(pC)J

+
∑
I

∑
J

δd(pG)I
∫
B0

NInF
∂sL

∂pc
(pC)′ F−1no

∂NJ

∂Xn
dV0S ∆d(uS)J

−
∑
I

∑
J

δd(pG)I
∫
B0

NI sG

ρGRθ
(pG)′S JSF

−1
no

∂NJ

∂Xn
dV0S ∆d(uS)J

(A.110)



104



Appendix: Ethics approval 105

B. Appendix: Ethics approval



References

[1] K. Toongoenthong and K. Maekawa. Simulation of coupled corrosive product formation, migra-

tion into crak and propagation in reinforced concrete sections. Journal of Advanced Concrete

Technology, 3(2):253–265, 2005.

[2] D.V. Val, L. Chernin, and M.G. Stewart. Experimental and numerical investigation of

corrosion-induced cover cracking in reinforced concrete structures. Journal of Structural En-

gineering, 135(4):376–385, 2009.
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