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Abstract

Damage is briefly defined as the presence and growth of micro-defects in a ma-

terial. This study serves to describe the computational implementation of the

material damage theory adopted for ductile materials. Thus, pays attention to the

computational analysis of the physical behaviour of materials under finite defor-

mations — in particular, the stress-strain behaviour, load-deformation behaviour

and location of weak zones.

Throughout this study, non-linear continuum mechanics is utilised as the mathe-

matical basis of the constitutive and general finite element framework. In contin-

uum mechanics, there exists no requirement to discretely characterise each micro-

crack that grows in a material, thus making it possible to provide analysis of

the stress and strain response affected by micro-defects using material particles,

which are localised collections of many atomic-scale particles. The continuum is

thus a sum of its material particles. To complement this description of mechan-

ics, constitutive and phenomenological equations are adopted from the non-linear

thermodynamic phenomena of elasticity, plasticity, and damage; the laws of ther-

modynamics will therefore apply and are shown as such.

The proposed material damage model is developed and implemented in the back-

end of the in-house computational mechanics toolbox SESKA, which uses finite

element-based discretisation and approximation techniques. Field and scalar quan-

tities, such as stress and strain, are computed with the use of the return-mapping

method. The stress measures utilised are the 2nd Piola-Kirchhoff stress S and the

Mandel stress Σ. The Newton-Raphson update scheme is applied in the plasticity

evolution equations via the plastic multiplier (denoted λ), which innately controls

the evolution of all other inelastic phenomena. Damage is a function of plastic evo-

lution and thus plays a role in the plasticity multiplier calculation. Moreover, this

proposed model makes the assumption of full isotropy, all material properties at a

material point are the same in tension and compression and the same regardless

of the dimension.

Finally, several examples are utilised to showcase the model and all the intri-

cacies are presented — the problem setup, boundary condition assignment and

multi-layered analysis are detailed in the content of this study and the examples

perform well under qualitative scrutiny. These examples include a cantilevered

beam model, a simply supported bending model and a plane strain example to

evaluate whether the material model achieves qualifiable correlation to expected

behaviour and to assess whether the damage-related parameters affect the stress
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and strain behaviour as expected. In brief conclusion, this paper shows that the

model achieves qualifiable correlation and all the material parameters function as

expected.
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Chapter 1

Introduction

1.1 Background to the study

Damage is briefly defined as the presence and growth of micro-defects in a material.

Micro-defects in all contexts of damage are described as microscopic discontinuities

which may manifest in several forms and take several different paths of growth. An

instance of micro-defects are micro-voids, which manifest as a result of continuous

supply of external mechanical work to break the atomic bonds that hold together

homogeneous areas containing imperfections that already exist, such as lattice

defects and dislocations — this is often known as ductile damage. Another instance

are micro-cracks, which occur as a result of exceeding the elastic stored energy

threshold by a supply of external mechanical work done to the material [17]; the

phenomena of damage may only proceed if the micro-cracks are allowed to grow

and connect to other small cracks upon persistent supply of external mechanical

work — this is known as brittle damage [20].

However, a microscopic approach to characterising damage may require quite dili-

gent experimental methods and compelling computational methodology. For one

to be able to effectively apply the scientific method at the microscale of a material,

to discretise material behaviour at this scale, computational resources are always a

limiting factor — the characterisation of microscopic voids or defects requires spe-

cific statistical, chemical and physical approaches. For example, in discovering the

thermodynamic of entropy in particles at the microscale, one would need to invoke

the Boltzmann-Planck equation [35] which requires some probabilistic quantisation

of a number of atoms of order 1023 or more per particle — this would be resource

intensive. It is clear that for a constitutive formulation, a discrete approach would

be quite cumbersome. Furthermore, in structural engineering applications there

is no need to incorporate micro-mechanics unless the micro-mechanical concepts

convey a distinctly different physical reality to that at the macroscale. Thus,

the use of continuum damage mechanics is often employed. This was a field pi-

oneered in the mid to late 20th century, where non-linear continuum mechanics

and the mechanics and thermodynamics of material damage theory are combined

to effectively describe damage phenomena in a continuous material volume [43].

Continuum damage theory removes a focus on microscopic particles but rather

collects them into larger particles of approximately 0.1 mm3 in size [24] for ductile

materials; these particles form the infinitely divisible continuum body [19] and are

1



Chapter 1. Introduction 2

spread throughout the material regardless of any discontinuities and defects that

may occur at the microscale. This may be otherwise interpreted as the meso-scopic

overview of material damage phenomena, which then requires a local material de-

scription of damage and follows some of the principles in [13] as it pertains to

”smearing” damage. It abandons any requirement for a discrete crack analysis ap-

proach as in [10]. The continuum itself may be defined in two configurations: the

material (reference) configuration, which is the reference state of the continuum or

the current configuration which is the deformed state of the continuum, and the

mechanics of each are detailed in this thesis.

Damage is a similar thermodynamic mechanism to plasticity and plastic hard-

ening/softening in that all these mechanisms dissipate internal energy at yielded

points in a material [24]. Dissipation is defined as the process by which work done

from external mechanical or thermal actions is converted to internal heat, which

produces entropy. It follows from the 2nd law of thermodynamics that the produc-

tion of entropy is irreversible [8], thus damage is an irreversible mechanism. This

basic theory of damage is crucial to any study of material damage and crucial to

the content of this study. Damage, when analysed at the meso- or micro- scale, is

as a consequence of the growth and nucleation of micro-defects into singular cracks

that may eventually form macroscopic cracks [23]. This may introduce disconti-

nuities into the continuum at the mesoscale as damage evolves and by employing

the isotropic damage approach, each micro-crack is extant in all three dimen-

sions across the entire volume; this has the implication of degrading the material

properties to compensate for the growth of micro-defects. Logically, the more

micro-defects that exist in the continuum, the higher the degree of degradation of

stiffness and elastic moduli. This results in a reduction of material’s effective load-

carrying capacity [23]. These concepts are the backbone of the proposed material

damage model.

The material damage model is developed and implemented in the back-end of the

in-house computational mechanics toolbox SESKA1, which uses finite element-

based approximation and integration techniques. In SESKA, each simulation has

simulation steps which contain iterative steps intrinsically. This model uses the

Mandel stress measure [28] (defined in an intermediate configuration in elasto-

plastic applications) in the computation of variables as shall be seen later in this

thesis, and is important since our solving techniques employ the use of trial (inter-

1SESKA is a computational framework that has been developed by Prof. Sebastian Skatulla
(PhD), who developed the entire foundation of SESKA and a majority of its material. On
top of that, SESKA and contains plenty of material models which are implemented by other
researchers. Notably, the Phase Field fracture model by Mr. Emmanuel Omatuku-Ngongo
(MSc) and Theory of Porous Media based models by Mr. Gary Hopkins (MSc) are currently
part of the SESKA framework.
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mediate) approximations which are then refined as the simulation progresses; the

trial (Mandel) stress is then pulled back to the material configuration as the 2nd

Piola-Kirchhoff stress, which records stress in the material configuration. Further-

more, the use of the logarithmic strain [12] precisely characterises finite strains in

iterative increments, whilst the material velocity gradient is used to characterise

rate of strain — as per the thermodynamic framework of this model. It is noted

here that the background FEM details such as the spatial discretisation of the

displacement and weak formulations are explored.

The implementation of this model makes several other assumptions: localised

material isotropy in tension and compression, and damage analysis only includes

behaviour up to the failure limit, this model does not assess fracture and all the

nuances of fracture mechanics. The identification of material properties and the

calibration and model verification methods will be fully explored and maximised

to ensure that the model is efficient and precise in describing material behaviour.

1.2 Aim and objectives of the study

This particular study aims to describe an attempt at modelling damage with duc-

tile behaviour. The model employs plasticity considerations from rate-independent

plasticity principles to account for ductility of the material. For lower strain-

rates such as those observed in laboratory testing procedures of individual and

downscaled members, and in natural loading situations of structures, the rate-

independent plasticity considerations apply well [26].

Hence, this study aims to model the ductile stress-strain behaviour and load-

carrying capacity discrepancies in damaged materials and members using finite

deformation concepts. Furthermore, this research hinges on pre-existing physics

and mechanical concepts adopted for use in a complex and unique material me-

chanics framework called SESKA, developed in-house at the University of Cape

Town (UCT).

Furthermore, within the Polar Engineering Research Group (PERG) at UCT, the

study of material damage is proceeding via computation-based research and this

study proceeds to contribute to that. The overarching aim of the study is to

implement a material damage model, therefore, it contains some objectives that

are part of the whole aim of the study:

� Develop an understanding of the continuum mechanics of non-linear physical

phenomena, and understanding the concepts of material damage theory and
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how the two aforementioned subjects combine to form continuum damage me-

chanics.

� Build a constitutive theory of finite elastoplasticity, using the logarithmic strain

to characterise strains in the elastic regime and using von Mises plasticity

to characterise material behaviour beyond the yield point. Material damage

concepts are then used to characterise damage phenomena.

� Computational implementation of a Lemaitre-based elastoplastic-damage model.

Whereby equations may be drawn from those developed by Lemaitre [22] to

characterise local damage, and leaning on the smeared damage concepts out-

lined in [13] and [4] to visualise macroscopic damage. This implementation will

be done in SESKA using C++.

� Perform mock tests of the implemented model, by running simulations in

SESKA.

1.3 Scope and limitations

The scope of this research is limited to the use of continuum mechanics and mate-

rial damage theory, as well as rate-independent plasticity theory concepts to build

a computational material model to be implemented in an in-house software.

The entire study is be based on computer simulation as it is a computation-based

research topic. All computations and simulations were planned to be performed

on a local computer, with 16 GB RAM, and an 8-core Intel® CoreTM i7 processor

– which was previously sufficient computing power for small to medium-scale sim-

ulations as per the content of this study. However, the University of Cape Town

High Performance Computing (UCT HPC2) facilitated for faster simulations and

the potential for large-scale simulations.

As this research is entirely based on computational modelling, it hinges on con-

solidation from various sources of literature and scientific direction to fulfil the

objectives of the study. Sources of information are fully referenced, cited and ac-

credited. Lastly, all work done as part of this study is set to build upon the wealth

of knowledge and tools that are used in observing, characterising and predicting

the physical behaviour of materials under applied load.

2UCT maintains a high performance computing facility available to university researchers,
and private/public sector researchers as well. http://hpc.uct.ac.za/

http://hpc.uct.ac.za/
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1.4 Layout of this document

Chapter 1 of this document provides an introduction to the topic of damage,

aligned with research that came precedent to this one. Chapter 2 provides the

mathematics of non-linear continuum mechanics, where plasticity or damage phe-

nomena are not discussed in detail, rather discussed is the manner in which con-

tinuum mechanics is used to describe deformation and motion of continuous solids

in general.

Furthermore, Chapter 3 attempts to provide a primer to material damage theory,

and serves as a literature review on this material damage implementation. It

is based on non-linear continuum mechanics with thermodynamic considerations

made for the damage phenomena studied throughout this research. Chapter 4

outlines the detailed, model-specific mechanics, phenomenological evolution laws,

constitutive equations as well as provides the thermodynamic formulations and

associated flow rule that leads to the phenomenological evolution laws within this

framework.

Following from the aforementioned chapters is Chapter 5, which is the section of

this document that concerns the methodology: outlining the numerical methods

such as the algorithmic implementations and the parametric update scheme of

damage, hardening, and plasticity phenomena. Chapter 6 presents the results of

simulations ran with the implemented model and Chapter 7 outlines the discussions

of the results and the implementation alike.

Lastly, Chapter 8 refers to some to some conclusions and future work plans. This

is the entire description of the content of this thesis document. Throughout this

research, the implemented model is referred to as the ”material damage model”.



Chapter 2

Non-linear continuum mechanics theory

2.1 Introduction

All continuous matter, as is the case with all materials that will be modelled us-

ing the proposed material damage model outlined in this paper, is comprised of

molecules bound together by microscopic bonds — the nature of these bonds de-

pends on the particular chemistry of the atoms that form the molecules and the

mechanical behaviour of the subatomic particles that are contained as part of the

fundamental structure of the atoms therein. This is a physical fact, and is utilised

to analyse material behaviour at the microscopic scale. However, for applied en-

gineering applications, the burden falls on the use of a continuum mechanical

approach — whereby the mechanical behaviour of materials is modelled assum-

ing continuity in the spread of particles throughout the material volume. This

rather than qualifying and quantifying mechanical behaviour by focusing on each

discrete molecule/atom in the material structure. Therefore, by this continuum

mechanics approach, the material is assumed to be continuous and mathematical

descriptions established as a consequence of this apply everywhere in the material

body. Moreover, the continuum approach allows for a frame-independent overview

of the physical properties and thus, behaviour of a material on the mesoscale and

microscale.

The study of continuum mechanics, and the study of materials using this method,

employs several aspects that are fundamental to determining a suitable mathemat-

ical description of the material’s mesoscopic phenomena. First is kinematics, which

entails the study of the motion and deformation of a body in any spatial reference

frame and in time [14]. The second is stress, and the study and description of

forces acting within a continuous material body. Lastly are the balance equations,

which are fundamental laws of physics such as the balance of momentum, balance

of mass, energy conservation, and irreversibility of entropy production principles

that govern the motion and deformation of the material body [18] — in particular

the 1st and 2nd laws of thermodynamics. From the appropriate application of these

concepts is derived the thermo-mechanical constitutive equations required to de-

scribe the continuum, and the solutions that evaluate the material or continuum

mechanical phenomena.

6
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It must be noted that for the entirety of this description, the three-dimensional

Euclidean vector space is used as the spatial reference frame, denoted as E(3). The
term deformation will be used to refer to all manner of deformation and motion

of the continuum: shape change, orientation change and spatial translation.

Any continuum whose mass m interacts with energy, either by dissipating mechan-

ical work done by externally applied or internal body loads, may be classed in this

paper as a thermodynamic continuum, thermo-mechanic continuum, continuum,

material or material body/volume. All these terms are interchangeable. Further-

more, this study assumes that mechanical processes are isothermal and involve no

heat supply (heat flux) or temperature changes — the only thermodynamic effects

observed are those that arise from the mechanical phenomena.

Lastly, in other literature, the identity matrix in mathematics and mechanics ap-

plications is termed as 1; for this paper, the identity matrix is termed I. Therefore,

1 is an all-ones matrix. Essentially, the two are defined as

I = 1(ei ⊗ ej) (2.1)

1 = 1(ei ⊗ ei). (2.2)

2.2 Continuum configurations

From the adoption of the continuum approach, it is evident that a suitable theory

is required whereby the configurations of the continuum or material are defined

[29]. These configurations represent the state of a material at any point in time

for which its physical quantities may be observed or recorded. If it is assumed

that any material body B has a continuous distribution of matter and mass in

any reference frame in space and in time, then it can be postulated that the

material is completely comprised of a continuously non-discrete set of material

points P ∈ B [14]. These material points contain several particles in the locality

of the material point but are not inherently small enough to be analysed with the

discrete approach.

Considering that the continuum is a three-dimensional material body, B in the

Euclidean vector space E(3) at a fixed instance of time t0. A material reference

frame composed of orthonormal basis vectors ei, i = [1, 2, 3] with an origin point

O may be used to describe the position of each material point in the continuum

— shown in Figure 2.1. Any reference state of the continuum at time t = 0, is

known as the material/reference configuration. If any motion or deformation is
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imposed on the material from its reference state, with time having elapsed to a

time t, then it can be expected that the continuum then holds a different spatial

position relative to its reference configuration. Consequently, every material point

now occupies a continuous spatial point or region in space, the collection of these

spatial regions is known as the deformed/current configuration of the material

body [19].

It follows that there may be infinitely many deformed configurations of the ma-

terial, only discernible by their exact corresponding reference in time t. Each

material point P ∈ B is represented by position vector X = Xiei in the refer-

ence configuration and by spatial coordinate vectors x = xiei in the deformed

configuration with i = [1, 2, 3] as per the E(3).

Figure 2.1: Configurations of a continuum under deformation [14]. The reference
configuration defines the continuum B at time t = 0, whilst the current configura-
tion defines the continuum at time t. P = P (X) and p = P (x, t).

2.3 Kinematics

2.3.1 Differentiation of quantities

We consider an arbitrary, but smooth tensorial quantityW in providing the funda-

mental differentiation concepts for tensor fields in the study of continuum mechan-

ics and in this study overall. We also consider an arbitrary vector w to provide the

same context but for vector fields. With all concepts discussed in this section, the

time derivatives, gradient fields and divergence fields are all derived with respect

to each continuum configuration.



Chapter 2. Non-linear continuum mechanics theory 9

2.3.1.1 Time derivatives

We postulate that the tensorW has derivatives defined in the current configuration

as Ẇt and in the reference configuration as Ẇ0, its material time derivative is

expressed as

Ẇ0 =
DW

Dt
(2.3)

for which the material position X is held fixed as the field quantity changes with

time [14]. Similarly, for vector fields such as w

ẇ0 =
Dw

Dt
. (2.4)

The spatial time derivative is defined as the rate of change of a field with respect

to time while the spatial position x is held fixed. This leads to the following

expressions for the spatial time derivative of vectors and tensors:

Ẇt =
dW

dt
(2.5)

ẇt =
dw

dt
(2.6)

2.3.1.2 Gradient operator

In contrast to the time derivative, the gradient is interpreted as being the par-

tial derivative of the tensor/vector field with respect to the position it holds in

whichever description of the continuum — X for the material description and x

for the spatial description. Importantly, time is considered constant. Thus, we

define the material gradient field as

Grad (W) =
∂W

∂X
(2.7)

Grad (w) =
∂w

∂X
. (2.8)

The spatial gradient field is expressed as

Grad (W) =
∂W

∂x
(2.9)

Grad (w) =
∂w

∂x
. (2.10)
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2.3.1.3 Divergence

The divergence quantifies the outward flux vector field w at a point — with the

assumption of that the vector field is the source of that outward flux. It also

quantifies the flux density of the source of any arbitrary Tensor field W. It reduces

the order of the field by 1 [38], thus a tensor field reduces to a vector field and

a vector field reduces to a scalar field. Divergence is defined in the reference

configuration as

Div (W) = Grad(W) : I (2.11)

Div (w) = Grad(w) : I (2.12)

termed the material divergence. Furthermore, it is expressed in the current con-

figuration as the spatial divergence

Div (W) = grad(W) : I (2.13)

Div (w) = grad(w) : I (2.14)

2.3.2 Deformation gradient

From Figure 2.2 it is evident that the deformation denoted by χ maps the material

point P ∈ B0 in the reference configuration onto its corresponding spatial position

in the deformed configuration P ∈ Bt — χ : B0 → Bt. Therefore

x = χ (X, t) . (2.15)

Furthermore, the deformation χ is uniquely invertible [14]. The inverse motion is

one that returns the current configuration to its previous reference configuration.

X = χ−1 (x, t) . (2.16)

Consider an infinitesimal line dX between a point P and Q in the reference state

of the continuum B0. It is mapped onto a corresponding line dx in Bt by the defor-

mation χ — there exists an invertible tangent map such that dx = Grad (χ) dX.

We introduce a quantity called the deformation gradient F, which is a the primary

measure of deformation in continuum mechanics, and it is such it maintains the

invertible tangent map of the deformation:
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Figure 2.2: Deformation of the continuum with deformation of χ. The reference
configuration defines the continuum B at time t = 0, whilst the current configu-
ration defines the continuum at time t. P = P (X), p = P (x, t) and Q = Q(X),
q = Q(x, t).

F = Grad (χ) =
dx

dX
(2.17)

In fact, continuum motion/deformation is described by the deformation gradient

— a representation of the change of spatial position with respect to each material

particle position in the continuous medium. In the vector space E(3) used for

this paper and the model presented later on, F is a 2nd order tensor which char-

acterises the deformation of the continuum for each material point. Lastly, the

Jacobian describes a relative change in volume between the reference and current

configurations such that

J =
dv

dV
(2.18)

J = det(F). (2.19)

Finally, the following identity exists for the deformation gradient tensor:

FF−1 = I. (2.20)

2.3.3 Strain tensors

The right Cauchy-Green tensor C is often utilised in continuum mechanics ap-

plications to characterise material strain. It is a symmetric tensor composed of

the deformation gradient tensor F and is important in characterising strain in

the material configuration (reference configuration) [14]. For each point P ∈ B0,

whereby B0 is the reference configuration of the continuum, the symmetric right

Cauchy-Green tensor C is defined as
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C = FTF. (2.21)

C is a 2nd order tensor, and is positive-definite — all the eigenvalues of C are

positive. It is possible to define the right Cauchy-Green tensor as composed by its

symmetric right stretch tensor U [19] as

C = U2. (2.22)

From [11] and Eq. (2.21), it is also possible to state that

det(C) = det(F)2 = J2. (2.23)

2.3.4 Strain-rate tensors

The rate of deformation is vital in studying deformation with respect to time

evolution. For any deformation χ, there may be an associated translation, rotation

or change in dimensions of the material body.

In the deformed configuration, the spatial velocity gradient tensor l is a physical

quantity of the continuum related to the rate of change of deformation around

spatial points P ∈ Bt. This is defined as

l =
∂

∂t

(
∂χ

∂x

)
=

∂

∂x

(
∂χ

∂t

)
(2.24)

l =
∂v

∂x
= grad (v) (2.25)

whereby v = v(x, t) is the spatial velocity vector.

For the reference configuration, the material velocity gradient tensor L is also

known as the strain-rate tensor throughout this study. It describes the rate of

change of deformation of the continuum around a point P ∈ B0. From [38], the

material velocity gradient/strain-rate tensor is defined as

L =
∂v0

∂X
= Grad (v0) , (2.26)

whereby throughout this study, v0 = v(X) is the material velocity vector. Finally,

this means that the material time derivative of the deformation gradient F may

also be shown as a tensor constructed with the strain-rate tensor or spatial velocity

gradient:
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Ḟ = (lF) = (FL) . (2.27)

It is noted that the material velocity gradient is interpreted as being a pull-back

operation on the spatial velocity gradient, i.e if f : L → l then f−1 : l → L.

2.4 Stress concepts

Figure 2.3: Schematic representation of 3D infinitesimal stress block showing the
external force vector and the surface traction vector.

If one may consider an arbitrary forcing action (force) f0 = f(X) acting on a

three-dimensional infinitesimal stress block B0 with volume dV and over a plane

surface area dA, then the force causes stress in the block which may be visualised

as being defined in infinitely many orientations in the E(3) space. This is shown in

Figure 2.3. However, for every point P ∈ B0, the arbitrary forces are represented

by the differential force vector df0. Surface traction is considered as the force

acting per unit surface area [14], thus for every local point the infinitesimal stress

block the Piola-Kirchhoff traction vector t0 is defined as

t0 =
df0
dA

. (2.28)

The Cauchy traction vector may be split into two main components on the tangen-

tial plane to the surface of the block — normal traction, t0,n and shear traction,

t0,s [18]. Furthermore, there must exist a unique 2nd order tensor P in the ref-

erence configuration that captures information about the three-dimensional stress

state in the material, such that it relates to the surface traction and the normal

vector N as
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t0 = PN. (2.29)

The 2nd order tensor P the 1st Piola-Kirchhoff stress tensor, and it defines any

three-dimensional internal stress state in the deformed configuration in relation to

the reference volume. Furthermore, there are several other stress measures that

are utilised in describing the internal stress response of the continuum namely

the 2nd Piola-Kirchhoff stress S [29]. The 2nd Piola-Kirchhoff stress defines any

three-dimensional internal stress state in the reference configuration in relation to

the reference volume. After tensorial analysis, the following relation(s) hold for

the aforementioned stress tensors:

P = FS. (2.30)

2.5 Balance and conservation equations

The balance equations in the solid mechanics context of this study are tied to the

conservation of mass, and momentum, and energy for each point P ∈ (B0,Bt).

Given the material body is considered as being continuous, then the fundamental

physical properties such as mass and volume follow in similar suit. Furthermore,

the system that contains the continuum is considered a closed system as there is

no mass supply. The balance equations are summarised as below and are adapted

from various literature: [14], [47] in [29]. The balance equations apply for any

part/local point in a continuum body, which is considered a closed system in these

formulations, unless stated otherwise.

2.5.1 Balance of mass

The law of conservation of mass in physics states that for any closed system, the

mass of the system may not change as time evolves. Essentially, ”mass cannot

be destroyed or created” for as long as the physical description of such mass m

is non-relativistic [14]. For a closed system, the continuum body Bt ∈ E(3) that

constitutes that system is assumed to have mass m at any point in time t. The

continuum is defined as a collection of spatial points P ∈ Bt, thus the continuum

mass quantity may be defined as

m =

∫
Bt

ρ(x, t) dv (2.31)

whereby v is the deformed volume of the continuum, and ρt is the deformed density

of a point P ∈ Bt with spatial coordinates x at time t such that
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ρt = ρ(x, t). (2.32)

It is established that mass is conserved, consequently, this means there is zero flux

of matter in or out at any point on the boundary surface ∂B on the continuum

body in either the reference or deformed configurations [47]. Hence the material

time derivative of m is

ṁ =
Dm

Dt
=

D

Dt

∫
Bt

ρt(x, t) dv = 0. (2.33)

This relation holds at every point in the continuum at all times. It is thus the global

form of the mass balance in the deformed configuration as mass is a conserved

quantity. The mass in the reference configuration, time t = 0 is defined as

m =

∫
B0

ρ0 dV, (2.34)

whereby the density term ρ0 represents the density of a material point P with

coordinates X at time t = 0 such that

ρ0 = ρ(X). (2.35)

We have established for a closed system without mass supply, mass is conserved

under deformation/motion. Therefore, the following relation holds∫
Bt

ρt dv =

∫
B0

ρ0 dV. (2.36)

From the definition of the deformation gradient in Section 2.3.2, it is seen that the

reference and deformed volume are related as

dv = J dV (2.37)

for a continuum undergoing deformation of χ : B0 → Bt. Therefore, using

Eq. (2.36), it is possible to deduct that∫
B0

[ρtJ dV − ρ0 dV ] = 0, (2.38)

which is the global form of the continuity mass equation — it represents the con-

servation of mass in the continuum in the material description [29]. Thus it is

possible to obtain the local form of the continuity mass equation fro an arbitrary

domain in the continuum as
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ρtJ = ρ0, (2.39)

whereby J = det(F) > 0.

2.5.2 Balance of linear momentum

We consider a material body in the reference state, B0, undergoing deformation χ0

— the deformation is caused by a combination of an external force f0 and internal

body force b0 = b(X). This material body has an arbitrary boundary surface ∂B0

with an arbitrary but continuous distribution of material points on the boundary

surface [14]. If an external force f0 acts upon ∂B0, then it is clear that this may be

represented by the aforementioned Piola-Kirchhoff traction vector t0 (Section 2.4).

Thus the total force f acting on the material body may be represented as

f =

∫
B0

b0 dV +

∫
∂B0

t0 dA, (2.40)

whereby dA is the differential area in the reference configuration. The material

body B0 is a closed system, and under deformation, each material point holds a

velocity represented by the material velocity vector v0 = v(X). Thus, the total

linear momentum p in the continuum at time t = 0 is defined as

p =

∫
B0

ρ0v0 dV. (2.41)

The law of conservation of linear momentum states that ”If the net external force

acting on a system of bodies is zero, then the momentum of the system remains

constant”. In [14], it is postulated that the rate change of momentum is equal to

the total/resultant force acting on Bt | t ∈ [0, ..., t]. As per the notation introduced

in this paper, this is

ṗ = f. (2.42)

The left-hand side is a time derivative, and in the material description this will

be considered the material time derivative of the total linear momentum p. In

conjunction, Eq. (2.40) and Eq. (2.41) are fed into Eq. (2.42) and it expands into

the following integral form

D

Dt

∫
B0

ρ0v0 dV =

∫
B0

b0 dV +

∫
∂B0

t0 dA. (2.43)
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For the traction term on the right-hand side in Eq. (2.43), it is possible to replace

the Piola-Kirchhoff traction vector with a term containing the 2nd Piola-Kirchhoff

stress tensor:-∫
∂B0

t0 dA =

∫
∂B0

FSN dA, (2.44)

wherebyN is the normal vector to any arbitrary boundary surface ∂B0 that bounds

the continuum body in its reference state. Use of the divergence theorem is em-

ployed to reach a final form for the traction term as∫
∂B0

t0 dA =

∫
B0

Div (FS) dV. (2.45)

For the rate change of linear momentum term on the left-hand side in Eq. (2.43),

the following relations are true:-

D

Dt

∫
B0

ρ0v0 dV =

∫
B0

ρ0v̇0 dV. (2.46)

Using these derived relations, and Eq. (2.43), the integral form of the momentum

balance requirement equation breaks down to∫
B0

ρ0v̇0 dV =

∫
B0

[b0 +Div (FS)] dV (2.47)

→
∫
B0

[ρ0v̇0 − b0 −Div (FS)] dV = 0, (2.48)

where v̇0 = v̇(X). Thus, the local form of the linear momentum balance equation

in the reference configuration is

Div (FS) + b0 = ρ0v̇0, (2.49)

which is also known as the equation of motion [29]. The acceleration field is often

negligible and thus the equation of motion may be written as

Div (FS) + b0 = 0. (2.50)

2.5.3 Balance of rotational momentum

Rotational momentum J is the moment of the angular (rotational) momentum, it

is defined as the cross product of the linear momentum, p and the position vector
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x of a point P ∈ B0. This quantity is considered to be conserved in a closed

system. The rate of change of angular momentum is required to equal the sum of

torque actions (turning moments) in the continuum, which is

J̇ = M (2.51)

whereby the rate of change of rotational momentum J̇ is the material time deriva-

tive of the total rotational momentum contained by the continuum at at time t = t

in the current configuration:

J̇ =
D

Dt

∫
Bt

x× ρ(x, t)v(x, t) dv (2.52)

which, if taken for the material configuration, is then of the integral form as follows:

J̇ =
D

Dt

∫
B0

x× ρ0v0 dV, (2.53)

→ J̇ =

∫
B0

x× ρ0
Dv0

Dt
dV. (2.54)

→ J̇ =

∫
B0

x× ρ0v̇0 dV. (2.55)

The total moment acting on the continuum is evaluated as the rotational equivalent

of applied force f, which in the reference configuration is

M =

∫
∂B0

x× t0 dA0 +

∫
V0

x× b0 dV0. (2.56)

b0 = b(X) is the reference body force and t0 is the Piola-Kirchhoff traction vector.

When working in the reference configuration, it is often that either the 1st or 2nd

Piola-Kirchhoff stress tensor is used to store information about the material’s

stress response. Thereby the traction term in Eq. (2.56) becomes∫
∂B0

x× t0 dA =

∫
B0

x×Div (FS) dV +

∫
B0

ϵ : (FS)T dV, (2.57)

whereby ϵ is the permutation tensor - i.e x×t0 = ϵijkxi(t0)jek. Thus, the equation

for the total moment M is

M =

∫
B0

[
(x× [Div(FS) + b0]) + ϵ : (FS)T

]
dV. (2.58)
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The final form of the balance equation J̇ = M may be obtained for the reference

configuration which, when relativistic effects are ignored as is the scope of this

work, may not have a non zero volume, thus∫
B0

x× [Div(FS) + b0 − ρ0v̇0] dV =

∫
B0

ϵ : (FS)T dV, (2.59)

which is the actual integral form of the balance of rotational momentum equation.

By analysing the equation of motion from Section 2.5.2, one can obtain

Div (FS) + b0 − ρ0v̇0 = 0. (2.60)

From this, it is evident that both sides of the integral form of the balance of

rotational momentum equation in Eq. (2.59) equate to 0. Which leads to the

following condition for the right-hand side of that equation∫
Bt

ϵ : (FS)T dV = 0 (2.61)

→ ϵ : (FS)T = 0. (2.62)

Some identities for the Piola-Kirchhoff stress measures follow directly from Eq. (2.62):

(FS)T = STFT , (2.63)

which gives

S = ST . (2.64)

The 2nd Piola-Kirchhoff stress measure is crucial in this study as will be seen later

in this document.

2.5.4 Balance of mechanical energy

The law of conservation of energy states that ”the total energy of an isolated

system is conserved over time, energy may be converted from one form to another

but may not be created nor destroyed”. Initially, the material body B0 undergoing

a deformation χ from its reference state to its deformed state is considered once

again. This material body in the reference configuration has an arbitrary collection

of particles that form an arbitrary boundary surface ∂B0 on the material body.
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To balance the mechanical energy in the continuum body, the amount of exter-

nal work Wext introduced to the continuum must equate to the amount of work

absorbed and converted to internal energy during the deformation χ — internal

energy e = e(C). Thus the balance of mechanical energy may be represented

mathematically:

e = Wext. (2.65)

As the deformation of the continuum occurs over time t ∈ [0, ..., t], it is more

suitable to define the balance of mechanical energy principles in terms of work

done per unit time (power) as

K̇ + Pint = Pext, (2.66)

whereby Pint introduces the internal mechanical power and Pext are external power.

The time rate of change of the kinetic energy, given as K̇ in Eq. (2.66), is simply

the material time derivative of the kinetic energy when considered in the material

configuration, which is the entire basis of this study. Thus,

K̇ =
DK
Dt

. (2.67)

Furthermore, the integral form of K may be described from the principles of ther-

modynamics, in that the kinetic energy is a product of the mass and velocity of

a point/particle in a material. Thus, for the continuum B0 with material velocity

field v0 = v(X), the material time derivative of the kinetic energy is

DK
Dt

=
D

Dt

∫
B0

1

2
ρ0v

2
0 dV, (2.68)

and may also be shown as

K̇ =
D

Dt

∫
B0

ρ0

(
1

2
v0 · v0

)
dV. (2.69)

According to [38], the internal mechanical power term Pint is the stress power.

The stress power is consequent of work done to induce stress in the material body.

The 2nd Piola-Kirchhoff stress tensor is used in the formulation of the stress power

as in Eq. (2.70) —

Pint =

∫
B0

FS : Ḟ dV. (2.70)
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The external mechanical power Pext is combination of the work produced by the

internal body forces b0 = b(X), and the work produced from the external applied

force on the arbitrary boundary surfaces to the continuum, envisioned by the

Piola-Kirchhoff traction vector t0. It is thus defined according to [27] as

Pext(t) =

∫
∂B0

t0 · v0 dA+

∫
B0

b0 · v0 dV. (2.71)

Therefore, the integral form of the mechanical energy balance equation in the

material description, also known as the 1st law of thermodynamics is

D

Dt

∫
B0

ρ0

(
1

2
v0 · v0

)
dV +

∫
B0

FS : Ḟ dV

=

∫
∂B0

t0 · v0 dA +

∫
B0

b0 · v0 dV. (2.72)

2.5.5 Balance of thermal energy

In order to derive an entropy-related inequality in the proceeding sections (such

as to not reverse the production of entropy in a continuum), the derivation of

balance equations for conservation of thermal energy is important. As entropy is

a thermal concept, we describe the balance of thermal energy from the 1st law of

thermodynamics as being

ρ0ė = Pint +Q, (2.73)

in which ė is the material rate of the internal energy and Pint is defined as the

stress power and Q as the thermal power. Pint has its global form defined in

Eq. (2.70), but takes the following pointwise form:

Pint = FS : Ḟ. (2.74)

We define the global form of the thermal power in the material configuration as

Q =

∫
∂B0

QN dA+

∫
B0

Q̇ dV, (2.75)

whereby QN is a scalar function of the heat flux through an arbitrary boundary

surface on the material body, and Q̇ denotes the rate of heat supply term (heat

supply per unit time). Stoke’s heat flux theorem provides that the scalar function

QN is
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QN = −Q ·N, (2.76)

for which N is the outward facing unit normal from an arbitrary boundary surface

∂B0 and Q = Q(X) — the Piola-Kirchhoff heat flux vector [14]. Thus Eq. (2.75)

is

Q = −
∫
∂B0

Q ·N dA+

∫
B0

Q̇ dV. (2.77)

The divergence theorem is employed on the heat flux term and thus the thermal

power takes the form

Q =

∫
B0

[
Q̇−Div(Q)

]
dV, (2.78)

which may then be expressed in the local form as

Q = Q̇−Div(Q). (2.79)

It is then possible to derive a local form for the balance of thermal energy as

postulated in Eq. (2.73) as

ρ0ė = FS : Ḟ+ Q̇−Div(Q). (2.80)

2.5.6 Irreversibility of entropy production

Mathematically, if there exists a state of the material such that any arbitrary

material point P ∈ B0 at time t = 0 has a pointwise entropy density of ϑ0 = ϑ(X)

and its corresponding spatial point P ∈ Bt has a pointwise entropy density of

ϑt = ϑ(x, t), then the entropy held by a material point is

η = ϑ0. (2.81)

Therefore, the material rate change of entropy is

η̇ =
Dη

Dt
(2.82)

from the definition of the material time derivative of a quantity (see Section 2.3.1.1).

The 2nd law of thermodynamics states that the material rate change of entropy

relates to the material rate supply of entropy Q̃ = Q̃(X) as
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η̇ ≥ Q̃. (2.83)

We define the global form of the material rate supply of entropy as being composed

of the Piola-Kirchhoff entropy flux H = H(X) and the entropy supply per unit

time ˙̃Q:

Q̃ = −
∫
∂B0

H ·N dA+

∫
B0

˙̃Q dV. (2.84)

Furthermore, in the thermodynamics of solid bodies, it is common knowledge that

˙̃Q =
Q̇

Θ
, (2.85)

and

H =
Q

Θ
, (2.86)

in which Q, Q̇ were described in Section 2.5.5 and Θ = Θ(X) is the smooth abso-

lute temperature function of each material point. Thus, it is also straightforward

to visualise the corollary between the material rate supply of entropy Q̃ and the

thermal power Q (Eq. (2.79)) as

Q̃ =
Q
Θ
. (2.87)

It is understood that for purely mechanical isothermal processes, Θ is a constant

scalar function. thus we define the local form of the material rate supply of entropy:

Q̃ =
1

Θ

[
Q̇−Div(Q)

]
. (2.88)

Therefore, the 2nd law of thermodynamics decomposes to

η̇ ≥ 1

Θ

[
Q̇−Div(Q)

]
. (2.89)

Due to the nature of elastoplastic deformations in a continuum, elastic deforma-

tions do not produce entropy over time (constant temperature, heat flux and heat

supply). Inelastic deformations produce entropy via dissipation and this produc-

tion of entropy is irreversible. Thus, the entropy held at any point in a continuum

becomes a combination of the reversible ηrev and inelastic ηpl forms

η = ηel + ηpl, (2.90)
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where

η̇el =
1

Θ

[
Q̇−Div(Q)

]
(2.91)

is true and this indicates that

η̇pl ≥ 0. (2.92)

The 1st law of thermodynamics is also represented in terms of the entropy as

ρ0ė = FS : Ḟ+Θη̇. (2.93)

We apply a Legendre transformation on the rate of internal energy ė and this

introduces the Helmholtz free-energy function Ψ:

ρ0Ψint = ρ0e−Θη, (2.94)

whereby Ψint = Ψint(C, η) is the local (pointwise) internal potential. In contin-

uum mechanics and in this study, the Helmholtz free-energy function is utilised to

quantise the useful work obtainable in a continuum body [47]. Taking the material

time derivative of both sides of Eq. (2.94) yields

ρ0Ψ̇int = ρ0(ė− Θ̇η −Θη̇), (2.95)

if for an isothermal process Θ̇ = 0, then

ρ0Ψ̇int = FS : Ḟ+Θη̇ −Θη̇, (2.96)

which provides the local form of the dissipation inequality as

ηpl = FS : Ḟ− ρ0Ψ̇int ≥ 0. (2.97)

Since all dissipative mechanisms are in the inelastic regime of deformation, then

we generalise the entropy inequality as the dissipation inequality D as follows:

D = FS : Ḟ− ρ0Ψ̇int ≥ 0. (2.98)

This holds for mechanical processes — the stress term is the internal stress power

Pint and the Ψ̇int term represents the sum of non-mechanical forms of internal

power.
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Material damage theory

3.1 Damage phenomenology

Damage is the progressive creation and growth of micro-defects at the microscale

of a continuum (material body). These micro-defects nucleate as networks of

cracks and form discontinuities that manifest themselves as cracks growing at the

macroscale. This is is the microscopic to macroscopic onset of material damage.

Notably, Lemaitre [24] identifies several mechanisms by which microscale damage

may occur in several types of materials: damage in polymers occurs when long-

chain bonds are broken and damage in concrete occurs whereby decohesion between

the aggregate and the cement matrix or by creation of micro-voids in the solid

cement matrix. Damage in ductile materials occurs by large deformation effects

which cause instability in the vicinity of cystalline defects and dislocations [23].

However, the basis of this study is the mesoscale to macroscale damage progres-

sion, where the microscopic discontinuities nucleate to initiate local discontinuities

(mesoscale discontinuities) which then evolve to form macro-cracks by growth and

networking of the local cracks under load/deformation. This is the idea of smeared

damage – local discontinuities that represent the local damaged state of material

points are then smeared over the volume containing those particles.

Furthermore, damage as a mechanical concept reduces the load-carrying capac-

ity of a point or collection of points in the material volume, as will be shown in

Section 3.3. The phenomena of damage is dissipative and thermodynamically ir-

reversible, and damage thereby is be related to plasticity. In analysing irreversible

thermodynamic processes, there is a requirement for thermodynamic state vari-

ables (state variables), which define the present state of any corresponding physical

mechanism and the thermodynamic state potential, which defines the state of the

process itself and is essential in defining the energetic variables associated with the

state variables [24]. The energetic variables are important in characterizing the

manner in which energy is dissipated in the continuum. Outlined in the following

sections are the essential concepts involved in describing material damage.

25
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3.2 Isotropic damage variable

From the definition of material damage, it is observed that damage is inherently

linked to the micro-structural configuration of a continuum — whereby bonds are

broken to form dislocations and these dislocations grow irreversibly to form cracks

[23]. For any two-dimensional surface δAS within which there exists micro-voids

and micro-cracks, the cumulative quantity of all micro-cracks and micro-voids is

assumed to be the combined surface area δAS,M of the intersections of all these

flaws in the continuum as shown in Figure 3.1.

Figure 3.1: Material damage theory represented in a material body. Showing
microvoid presence [24].

Therefore, the three-dimensional extrapolation of this concept in the continuum B0

is that the combined volume of micro-defects constitutes the cumulative quantity

of all micro-defects [25]. This is similar to the theory of plasticity, in which the

plastic strain is a representation of the accumulated irreversible deformation in the

material.

For any plane that cuts through the material continuum B0 as shown in Fig-

ure 3.1, there exists an area swept through by the plane (the cross-sectional) area

δAS and an effective surface area of the micro-defects δAS,M . The total volume of

micro-voids is the integration of micro-defect surface area throughout the entire
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continuum volume V [23]. Consequently, an isotropic damage variable M is intro-

duced in Eq. (3.1) and Eq. (3.2). M is a local quantity that represents the ratio

of the cumulative quantity of micro-defects to the undamaged quantity of matter.

M =
δAS,M

δAS

→ AM

A
(3.1)

M =
VM

V
. (3.2)

If the entirety of the volume is occupied my micro-cracks, then the material con-

tinuum is said to be cracked at the macroscale, M = 1. Furthermore, at the

mesoscale, local material points may be cracked if they assume the value of M = 1

before macroscopic damage occurs. In fact, it is most likely that the mesoscale

cracking occurs before macroscopic cracking through the smeared approach. How-

ever, the opposite of this is the scenario whereby M = 0, and no damage has

occurred. Therefore, the physical mechanism of damage is bound by these limits

0 ≤ M ≤ 1. (3.3)

The state of internal fracture in the continuum may be described by an arbitrary

value Mcr, which is the cracking limit for different materials, especially for ductile

materials for which cracking may occur at lower values of the damage variable M .

The behaviour of the material after the point of failure is outside the scope of this

study.

3.3 Effective stress concept

The constitutive relations between stress and strain from elasticity theory, make

use of the elastic modulus and Poisson’s ratio, which are material properties that

govern the internal stress response to applied loads/deformation. In plasticity

theory, the strain and stress are related by way of the yield criteria — detailed in

Section 4.7. The concept of stress in a continuum was described in Section 2.4,

where the Piola-Kirchhoff traction vector for any surface in a continuum body B0

is

t0 =
f0
A

(3.4)

→ t0 = PN, (3.5)
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whereby the relation between the 1st and 2nd Piola-Kirchhoff stress: FS = P hold,

such that

t0 = FSN. (3.6)

The continuum in this case is a square block as in Figure 3.2, which has an applied

force f0 that causes the traction on the model.

Figure 3.2: Schematic representation of a loaded square block showing the ex-
ternal force vector and the surface traction vector.

The isotropic damage variable M stores approximate information about the quan-

tity of discontinuities with respect to the entire continuum. Therefore, if there

exists any micro-voids AM in the material — the effective load-carrying area is

reduced to (A − AM). The effective surface traction is related to this effective

load-carrying area as

t̃0 =
f0

A− AM

(3.7)

then

t̃0 =
f0

A

(
1− AM

A

) , (3.8)

the term AM/A is the definition of the isotropic damage variable M . Thus,

t̃0 =
t0

1−M
(3.9)
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which is the effective normal traction. Thus, any stress measure is scaled by the

same quotient 1/(1 − M) to produce the ”effective” measure of stress, as the

damage variable is isotropic. This is the case in tension and in compression for a

material without the micro-defect closure effect. Thus

t̃0 = P̃N (3.10)

holds for damaged materials, which provides the effective 1st and 2nd Piola-Kirchhoff

stress measures as shown below. These stress measures will be shown to be vital

in this study:

P̃ =
P

1−M
, (3.11)

S̃ =
S

1−M
. (3.12)

Micro-defect closure occurs in brittle materials, whereby the effective load carrying

area is increased by the the compressive nature of the loading [25] and is repre-

sented by scaling down the magnitude of the damage variable in compression. In

fact, the phenomenon allows for recovery of part of the the elastic stiffness of the

material under compression [24]. However, this is outside the scope of this current

study and is not explored throughout this paper.

3.4 Thermodynamic potential & dissipation po-

tential

In the context of this study, the Helmholtz free-energy function applies as the

thermodynamic state potential, as it defines the thermodynamic state of a system

in isothermal processes — the state potential quantises the energy in the system

in deforming a material body regardless of the path of the deformation.

The dissipation potential follows from the principle of irreversibility of entropy pro-

duction in mechanical processes, this was introduced well in Section 2.5.6. This

section serves to introduce these thermodynamic quantities but greater mathemat-

ical detail is provided in Section 4.

3.4.1 Helmholtz free-energy function

The Helmholtz free-energy function is denoted as Ψ, is a physical quantity that

measures and/or describes the total potential (useful work) — the capacity of
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conservative forces to do non-mechanical and mechanical work in isothermal de-

formation of a continuum. Essentially, it is the combination of all contributions

to the internal non-mechanical potential of a continuum and the mechanical work

contributions by externally applied actions. Mathematically, the total potential is

of the sum of internal non-mechanical forms Ψint, and the external potential Ψ∗

Ψ = Ψint +Ψ∗, (3.13)

where Ψ∗ is the external potential, assumed nil. The internal potential, Ψint, is

related to elastic energy stored and energy associated with work done to facili-

tate for damage and work hardening in the material body. Thus, it may also be

decomposed into the elastic stored energy and the energy associated with irre-

versible phenomena. In this case, damage is coupled as it affects elasticity via the

effective stress concept and degrades the elastic modulus, and is coupled to the

work-hardening term as well as

Ψint = Ψint (Cel,M) + Ψint (Z,M) . (3.14)

When damage evolution is decoupled from plastic behaviour, then damage and

work hardening terms in Eq. (3.14) are represented independently. Therefore the

the total non-mechanical work forms are represented as

Ψint = Ψint (Cel) + Ψint (Z) + Ψint (M) . (3.15)

Here, Cel is the elastic right Cauchy-Green deformation, M is the local damage

variable and Z is the local isotropic hardening variable which will be expanded

when further thermodynamic descriptions in pertinence to this study are shown in

Chapter 4. The Helmholtz free-energy function will be used as the thermodynamic

state potential throughout this paper.

3.4.2 Entropy and dissipation

The concept of irreversibility of entropy production directly lead onto the dissipa-

tion inequality, which plays an important role in formulating constitutive relations.

In isothermal mechanical processes, the temperature is always locally and stati-

cally defined, thereby dissipation is the energy converted to heat and other entropy

producing forms at a certain temperature by irreversible deformations. The dis-

sipation inequality defines the potential for dissipation. This was introduced in

Section 2.5.6 for generalised continua as
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D = FS : Ḟ− ρ0Ψ̇int ≥ 0. (3.16)

Therefore, from Eq. (3.15) — with Pint being the stress power:

D = Pint − ρ0

(
Ψ̇int (EelM) + Ψ̇int(Z) + Ψ̇int(M)

)
. (3.17)

Essentially, this is the actual dissipation inequality function of a mechanical process

including local damage and work hardening. It may be interpreted physically as

the difference between the internal stress power (due to inducing a stress response

in the material), captured by the Pint term in this case, and the power dissipated

by dissipative mechanisms.

Further details on dissipation are provided in Section 4.5 — where the full context

of the proposed model (the terms and variables used in formulating the model) is

taken into account.
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Modelling local elastoplastic-damage

4.1 The general approach

The model follows directly from the concepts of non-linear continuum mechanics

(Chapter 2), and material damage theory (Chapter 3). In continuum mechanics,

any material body is assumed continuous throughout its volume, and its material

points assumed to be distributed in a homogeneous manner. Material damage

theory employs the use of an isotropic damage variable M to characterise the

gradual loss of load-carrying capacity due to progressive damage in a material

continuum.

This framework uses the Lagrangian approach, which indicates that all constitutive

formulations are applied on a continuum in its reference configurations, B0. Using

the deformed configuration would require the use of re-meshing techniques in the

finite element framework. The Lagrangian approach initialises by discretising a

local material point P ∈ B0 in the reference configuration and defines all internal

state variables and their associated energetic variables forthwith. The scale is

known as the mesoscale [23].

It must be mentioned that this constitutive framework stores deformation informa-

tion in the right Cauchy-Green tensor C which - the Lagrangian approach. This

is work-conjugate to the 2nd Piola-Kirchhoff stress tensor S [38]. It is observable

that

Pint = P : Ḟ = S :
1

2
Ċ. (4.1)

The primary objective of this study is to model damage in an isothermal context,

therefore all thermodynamic balance equations are considered at static tempera-

ture. This being the case, the model description will commence with a summary

of its thermodynamic state variables, then proceeds from there to describe the

constitutive relations and mechanics of the model.

32
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4.2 Large deformation elastoplasticity

Large deformation elastoplasticity follows from the kinematics defined in Sec-

tion 2.3. Large deformation elastoplasticity suitably accounts for deformations

in a wide scope of applications: from small-strain applications where minimal

shape change or length changes are observed, to large deformation situations such

as those seen in laboratory material strength testing. Furthermore, large deforma-

tion elastoplasticity accounts for plastic (irreversible) deformations by employing

a plastic portion for the finite deformation quantities such as the deformation

gradient, F, the right Cauchy-Green tensor C, and the strain-rate tensor L [26].

4.2.1 Multiplicative decomposition of deformation gradient

Figure 4.1: Schematic diagram showing the multiplicative decomposition of de-
formation gradient F. The intermediate configuration shows the split between
elasticity and plasticity.

The deformation gradient F characterises the local material deformation of a point

in a continuum. In generalised elastoplasticity theory, the deformation must con-

sist of both an elastic response to stress and a inelastic portion [26]. For small-

strain deformation, F is additively decomposed:

F = Fel + Fpl. (4.2)

However, damage and cracking of a material typically involves large deformations.

Therefore, the the simple assumption of additive decomposition of the deformation

quantities is abandoned for a multiplicatively decomposed deformation gradient:
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F = FelFpl. (4.3)

The inelastic portion Fpl is intrinsic to the configurations for which the deformation

is being characterised i.e. the deformed/reference configurations of the material.

Furthermore, the inelastic portion captures damage and plasticity. In Figure 4.1,

the intermediate configuration represents a stress-free state of the material. Fur-

ther mathematical relations pertaining to deformation gradient are summarised as

follows for the elastic portion:

ḞelF
−1
el + FelḞ

−1

el = 0 (4.4)

then, for the plastic portion:

ḞplF
−1
pl + FplḞ

−1

pl = 0, (4.5)

whereby in all both these equations, the following important relations also hold as

per the definition of the strain-rate tensor L in Section 2.3.4 -

Ḟ
−1

= −LF−1. (4.6)

4.2.2 Cauchy-Green strain

The right Cauchy-Green tensorC is essential for this theory. It describes the strain

in the reference configuration, and thus can be used in conjuction with the 2nd

Piola-Kirchhoff stress tensor S, which is also defined in the material configuration.

In Eq. (2.21), C = FTF holds and this breaks down to

C = FT
plF

T
elFelFpl (4.7)

→ C = FT
plCelFpl, (4.8)

which follows from derivations by Lubliner [26]. From Eq. (2.21), the following

relations also hold:

Cel = FT
elFel (4.9)

Cpl = FT
plFpl. (4.10)
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4.2.3 Plastic strain-rate

In finite strain kinematics, the strain-rate is recorded in the material velocity gra-

dient tensor L. this tensor is defined in the reference configuration, B0. The total

strain-rate tensor decomposes into the elastic and plastic portions as follows:

L = Lel + FelLplF
−1
el (4.11)

It is consequent that that the plastic strain-rate tensor, Lpl is related to the to the

total strain-rate, L as

L = Lel + FelLplF
−1
el , (4.12)

It also follows that the following relations also apply as a consequence of Eq. (2.26):

Lel = F−1
el Ḟel (4.13)

Lpl = F−1
pl Ḟpl. (4.14)

4.3 Mandel stress measure

In this section, the thermodynamics of the stress response to deformation are

discussed in order to qualify the concepts of stress in the elastoplastic-damage

application of this study. Firstly, a stress measure known as the Mandel stress,

denoted Σ is introduced such that it is conjugate to the total strain-rate tensor

L [28]. This stress tensor is defined with respect to an intermediate configuration

and is not symmetric, unlike the 2nd Piola-Kirchhoff stress tensor.

The strain-rate tensor L is critical to this study, as it the state variable used

to characterise deformation with respect to time. In fact, the mechanical stress

power P int in a continuum undergoing forced deformation over any time interval

t ∈ [0, ..., t] may be expressed in terms of Σ and L as

Pint = Σ : L, (4.15)

This will be proven in the proceeding equations. Using Eq. (2.26), where L =

F−1Ḟ, the mechanical stress power is of the form

Pint = Σ : F−1Ḟ = F−TΣ : Ḟ. (4.16)
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This is similar to the stress power term introduced in Section 2.5 using the 2nd

Piola-Kirchhoff stress tensor:

Pint = F−TΣ : Ḟ = FS : Ḟ, (4.17)

which represents the local formulations of mechanical stress power. The left-hand

of the tensor double-dot product operator on both sides may be equated, hence

F−TΣ = FS (4.18)

holds, and when the Mandel stress tensor is made the subject of the equation by

multiplying sides with FT , Eq. (4.18) becomes

Σ = FTFS. (4.19)

It has been established that C = FTF in Section 2.3.3, thus

Σ = CS. (4.20)

Finally, the Mandel stress tensor may be split it into the deviatoric and spherical

portions (frame-invariant):

Σ = dev(Σ) +
1

3
tr(Σ) I, (4.21)

this split is crucial to the composition of tensors in the algorithmic implementation

of this mode discussed later in Section 5.5.

4.4 Thermodynamic state variables

State variables refer to the mathematical descriptions of physical quantities as

observed in a continuum body B0 undergoing deformation. Thus, they are in ac-

cordance with the outwardly observable and internal mechanisms of deformation.

Furthermore, each state variable has a corresponding associated energetic vari-

able which as a whole defines the dissipative and non-dissipative thermodynamic

mechanisms taking place.
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4.4.1 Observed state variables

Observed state variables are measurable by physical means, whereby no extra

mathematical analysis is need beyond dimensional apportioning of the measured

quantities. In the coupled isothermal analysis of either ductile damage or brittle

damage, the observed variables are

� The total deformation is represented by the right Cauchy-Green tensor C, as

observed during the change of shape of the material body from one configura-

tion to another. Change of position is captured by u.

� Temperature Θ, which for an isothermal process will not vary and is considered

inconsequential for constitutive modelling purposes. However, temperature

affects the internal material properties and total dissipative power of irreversible

mechanisms, since they produce entropy at the current temperature.

4.4.2 Internal state variables

The internal state variables are associated with a corresponding thermodynamic

state potential and thermodynamic process. For instance, elasticity is a thermo-

dynamic process that converts mechanical work into potential energy in the form

of elastic stored energy. These internal state variables are as follows:

� Elastic portion of total deformation, represented represented by Cel or the

logarithmic (Hencky) strain tensor α as a result of the total stress response of

the material.

� Plastic portion of total deformation, represented by Cpl or by the rate of plastic

deformation tensor Lpl as a result of the plastic response of the the material.

� Isotropic hardening state variable Z, associated with the yield criterion and

the accumulated plastic strain p affected by the isotropic hardening mechanism

during the plastic phase of the strain response.

� Isotropic damage variable M , associated with the thermo-mechanical process

of damage.

4.4.3 Associated energetic variables

The energetic variables are associated with the dissipative mechanisms that alter

the thermodynamic state of the continuum B0. With inelastic deformations, the

energetic variables deal with entropy production in that they record the rate at

which the internal energy of the continuum is dissipated by material damage and

other dissipative mechanisms.
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� In the reference configuration, the deformation C,Cel are in association with

the total stress S developed in the material, S is the 2nd Piola-Kirchhoff stress.

� In the intermediate configuration, the Mandel stress Σ chracterises stress and

is associated with the inelastic phenomena — the plastic strain-rate tensor Lpl.

� The isotropic hardening state variable Z is in association with the isotropic

hardening potential, R.

� The damage potential, otherwise known as the damage energy density release

rate Y is associated with the isotropic damage variable M . It is a stress-like

variable describing the dissipation of work through damage.

4.5 Free-energy and dissipation

The stress power is described mathematically as

Pint = Σ : L. (4.22)

In any case where work is done on the continuum/material by external actions,

then the stress power is non-trivial — Pint > 0. It follows from the 2nd law

of thermodynamics that there exists an entropy dissipation requirement which

compares the mechanical stress power to the internal free energy power. The local

form of the entropy inequality principle is introduced in Section 3.4.2

D = Pint − ρ0Ψ̇int. (4.23)

Substituting Eq. (4.22) into Eq. (4.23), the following is obtained:

D = Σ : L− ρ0Ψ̇int. (4.24)

The dissipation potential is positive-valued i.e. D ≥ 0; it follows from the the

principle of irreversibility of entropy that the direction of local entropy production

is always positive [47]. The internal potential, Ψint comprises of the elastic stored

energy and the energy associated with strain hardening and damage. The local

form of the internal potential is

Ψint = Ψint(Cel,M) + Ψint(Z) + Ψint(M). (4.25)

It must be noted that since the elastic Cauchy-Green tensor term represents the

stored elastic strain energy and is related to the elastic properties of the mate-
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rial; elastic properties these are locally degraded by the isotropic damage variable

M . After employing the chain rule on the local form of Ψint, the material time

derivative of the internal potential function is mathematically derived as

Ψ̇int = (1−M)
∂Ψint

∂Cel

: Ċel +
∂Ψint

∂Z
· Ż +

∂Ψint

∂M
· Ṁ (4.26)

→ Ψ̇int = 2(1−M)CF−1
pl

∂Ψint

∂Cel

F−T
pl : (L− Lpl) +

∂Ψint

∂Z
· Ż +

∂Ψint

∂M
· Ṁ.

(4.27)

When Eq. (4.27) is substituted into Eq. (4.24), the dissipation inequality decom-

poses to

D = Σ : L− 2ρ0(1−M)CF−1
pl

∂Ψint

∂Cel

F−T
pl : (L− Lpl)

− ρ0
∂Ψint

∂Z
· Ż − ρ0

∂Ψint

∂M
· Ṁ ≥ 0 (4.28)

→ D =

(
Σ− 2ρ0(1−M)CF−1

pl

∂Ψint

∂Cel

F−T
pl

)
: L

+ 2ρ0(1−M)CF−1
pl

∂Ψint

∂Cel

F−T
pl : Lpl

− ρ0
∂Ψint

∂Z
· Ż − ρ0

∂Ψint

∂M
· Ṁ ≥ 0. (4.29)

This is all extended from the dissipation relation in [40]. The evolution of plasticity,

damage and elasticity are independent of each other and so are the phenomenolog-

ical rate variables L, Ż and Ṁ . Thus, the constitutive formulation of the Mandel

stress tensor may be derived from Eq. (4.29) as

Σ = 2ρ0(1−M)CF−1
pl

∂Ψint

∂Cel

F−T
pl , (4.30)

and given the identity in Eq. (4.8), it is determined that

C = FT
plCelFpl, (4.31)

CF−1
pl = FT

plCel. (4.32)

This yields the following form for the constitutive formulation of Σ:
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Σ = 2ρ0(1−M)FT
plCel

∂Ψint

∂Cel

F−T
pl . (4.33)

This is adopted from [39]. We define the following associated thermodynamic

quantities for the isotropic hardening parameter Z and isotropic damage variable

M from the dissipation inequality D as

R = −ρ0
∂Ψint

∂Z
, (4.34)

Y = −ρ0
∂Ψint

∂M
, (4.35)

respectively. From this, it is shown that the local form of the dissipation inequality

function may be expressed as

D = Σ : Lpl +R · Ż + Y · Ṁ ≥ 0 (4.36)

for this material model. This will be important in establishing the associative

flow rule and yield criteria later on. If each term represents different inelastic

phenomena, then it may further be simplified as

D = Pint(Lpl)− Ψ̇int(Z)− Ψ̇int(M) ≥ 0. (4.37)

4.6 Elasticity and strain

4.6.1 Hencky strain measure

The Hencky strain, denoted in this study as α, defined and in [12] is a logarithmic

strain measure — an alternative to conventional strain measures seen in solid

mechanics frameworks such as the standard linear elastic strain model where the

Green-Lagrange strain E is used. The Hencky logarithmic strain tensor is related

closely to the elastic right Cauchy-Green tensor Cel and its stretch tensor Uel; α

is defined as

α = ln (Cel), (4.38)

which may be expressed as a tensor composed of the logarithmic of the principal

values bases of Cel, with its principal bases being invariant to the logarithmic

operation:
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α =
3∑

i=1

ln (Cel)i (pi ⊗ pi) . (4.39)

The opposite is also true —

Cel = exp (α), (4.40)

→ Cel =
3∑

j=1

exp (αj)
(
pj ⊗ pj

)
. (4.41)

Adkins & Davidson [1] define a how matrix exponential may be expressed as a

power series of the matrix exponential. That definition may be applied to the

relation in Eq. (4.40) as follows:

exp (α) = 1 +α+
α2

2!
+

α3

3!
+ ... (4.42)

Furthermore, another important relation between the right Cauchy-Green tensor

and the Hencky logarithmic strain tensor follows from the following property: ”the

derivative of an exponential function maintains the exponential function in each

iteration of the derivative when taken with respect to its independent variable”

adopted from [21]. The chain rule when applied to Eq. (4.38) yields

∂Ψint(α)

∂α
= Cel

∂Ψint(Cel)

∂Cel

. (4.43)

The Mandel stress Σ, as introduced in Section 4.3 and further detailed in Sec-

tion 4.5 relates to the plastic deformation gradient Fpl and the internal free energy

Ψint. Furthermore, it follows from the relations in Eq. (4.43) that

Σ = 2ρ0(1−M)FT
pl

∂Ψint(α)

∂α
F−T

pl . (4.44)

Using the Hencky logarithmic strain tensor and Eq. (4.44), the distorted Hencky

logarithmic strain tensor, α is defined as

α = FT
plαF−1

pl [39], (4.45)

whereby the following also holds:

∂Ψint(α)

∂α
= FT

pl

∂Ψint(α)

∂α
F−1

pl . (4.46)
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Hence, it is then derived from the identity of the Hencky logarithmic strain tensor

in Eq. (4.40) that

Cel = exp (α) = FT
pl(exp (α))F−1

pl , (4.47)

and the local form of the thermodynamic relation of the Mandel stress and the

distorted Hencky strain is straightforward:

Σ = 2ρ0(1−M)
∂Ψint(α)

∂α
. (4.48)

→ Σ = 2ρ0
∂Ψint(α,M)

∂α
. (4.49)

4.6.2 Elastic constitutive relations

The Mandel stress and the Hencky logarithmic strain are thermodynamically re-

lated as was outlined in Eq. (4.48). The mechanical constitutive relation of the

Mandel stress and the distorted Hencky logarithmic strain tensor may be expressed

as being

Σ = (1−M)
[
K tr(αT )I+G dev(αT )

]
(4.50)

where the material properties G and K are the shear modulus and bulk modulus

respectively. This linear relation between Σ and α is chosen for computational

simplicity in this isotropic damage model. The effective Mandel stress is defined

as

Σ̃ = K tr(αT )I+G dev(αT ) (4.51)

whereby,

dev(αT ) = αT − 1

3
tr(αT )I (4.52)

αT = ln(CC−1
pl ). (4.53)

This was adapted from [39] and modified to incorporate local damage. However, it

must be noted that the Mandel stress is related to the Hencky logarithmic strain

in the intermediate configuration, which is a function the right Cauchy-Green

tensor. These quantities are important since the model utilises the intermediate

and reference configurations.
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4.7 Plasticity and damage evolution

4.7.1 von Mises Yield criterion

The von Mises yield surface [45] is used for this implementation:

f =

√
3J2

1−M
− (σy −R) (4.54)

whereby σy is the initial yield strength, assuming material isotropy. Furthermore,

the that yield strength is not specific to a particular stress regime (tensile or

compressive). J2 is the 2
nd invariant of the deviatoric portion of the Mandel stress

tensor:

J2 =
1

2
||dev(Σ)||2. (4.55)

Furthermore, R is the energetic stress-like variable associated with isotropic strain

hardening, as is derived in Section 4.5. R is power conjugate to the internal

isotropic hardening state variable Z. Therefore, it redefines the yield equation as

f =
||dev(Σ)||
1−M

−
√

2

3
(σy −R) (4.56)

Notable in this yield function is how the damage associate energetic variable Y is

not included in the yield criteria as it does not affect the onset of plasticity.

4.7.2 Damage energy density

In Section 4.5 it was discussed that the damage energy density release rate Y , which

is a stress-like variable defining the rate at which mechanical work is dissipated by

non-linear material damage mechanisms, is related to the internal work Ψint as

Y = −ρ0
∂Ψint

∂M
, (4.57)

and for this framework, a term for Y is a decomposed formulation of the equations

found in [17] and [25] — it is represented as

Y =
||dev(Σ)||2

4G(1−M)2
+

[tr(Σ)]2

2K(1−M)2
. (4.58)
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4.7.3 Non-linear isotropic hardening

Isotropic hardening represents work-hardening mechanisms in this model. The

internal stress-like variable R that defines the state potential of isotropic hardening

mechanisms in a material is related to the internal work Ψint as

R = −ρ0
∂Ψint

∂Z
, (4.59)

For the von Mises yield criteria in Eq. (4.56), the non-linear exponential hardening

law [46] is chosen

R = −HZ − (σ∞ − σy) [1− exp (−ηZ)] , (4.60)

where H represents the hardening modulus, σy represents the initial yield strength

of the material, σ∞ is the ultimate yield strength (rupture stress) and η is the

hardening saturation parameter.

4.7.4 Phenomenological evolution laws

This model uses the associative flow rule, for which the yield function is regarded

as the plastic potential and it is consequent from the concepts regarding the asso-

ciative flow rule in [26] and [39] that the following relations hold:

Lpl = λ
∂f

∂Σ
, (4.61)

whereby λ is the plastic multiplier and f represents the yield function as introduced

in Section 4.7.1. This is known as the associated flow rule [26]. It corresponds to

the normality rules, in that the derivative of the yield function with respect to the

stress variable is the gradient vector of the yield surface, which is also the normal

of that surface. Thus, the plastic strain-rate tensor is written as

Lpl = λ
dev(Σ)T

(1−M)||dev(Σ)||
= λNT , (4.62)

in which N is the normal to the yield surface and is known qualitatively as the

flow vector. Furthermore, the following relations for the plastic multiplier, λ exist:

λ =


> 0 if (f = 0)

= 0 if (f < 0).

The evolution of accumulated plastic strain is defined within this framework as
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ṗ =

√
2

3
||Lpl||. (4.63)

The following Kuhn-Tucker loading/unloading conditions also apply in this sense

as per the consistency requirements

λ ≥ 0 (4.64)

f ≤ 0 (4.65)

λf = 0. (4.66)

The consistency requirement is

λḟ = 0. (4.67)

It follows from the the relations between the associated energetic variables and the

state variables in Section 4.4 that

Ż = λ
∂f

∂R
=

√
2

3
λ, (4.68)

and

Ṁ =

√
2

3
λ

1

1−M

(
Y

S

)s

, (4.69)

where s and S are entropy- and temperature-related parameters; s is the damage

evolution law exponent — determined from experimentation but often s = 1, S is

the energetic damage law parameter — usually determined by several trial-and-

error or other identification methods. However, these are considered constants as

it pertains to this implementation, i.e. s = s0, S = S0.

Intuitively, a material is said to undergo damage when it exhibits a loss of stress-

carrying capacity, this may occur concurrently or independently to the plastic

phase of material behaviour. Theoretically, the introduction of a damage variable

may require a damage threshold, which is compared to the accumulated plastic

strain, p such that material damage evolves upon overage of this threshold. The

following definitions are of the accumulated plastic strain p, and the equivalent

critical damage strain pM
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p =

∫ t

tyield

ṗ dt =

∫ t

tyield

√
2

3
||Lpl|| dt (4.70)

pM = ϵM (4.71)

whereby ϵM is the value of the critical damage strain, which is interpreted and

implemented as a scalar as per the isotropic assumptions of the material behaviour

in this proposed model. Thus pM = ϵM . From the same concepts, the damage

evolution law is presented as per Lemaitre & Chaboche [23] and de Souza Neto et

al. [5] who show that damage may only evolve if the damage strain threshold has

been exceeded by the accumulated plastic strain, and only in the plastic zone as

we know, thereby

Ṁ =

√
2

3
λ
Ĥ(p− pM)

1−M

(
Y

S0

)s0

(4.72)

whereby Ĥ represents the Heaviside step function. This is a logical step in the

characterisation of damage. If the accumulated plastic strain is greater than the

equivalent critical damage strain (damage threshold) then the material is said to

have been damaged to an extent governed by the stress-like quantity Y , and the

thermo-mechanic material properties S0 and so. Therefore

Ṁ =

√
2

3
λ
Ĥ(p− pM)

1−M

(
Y

S0

)s0

=


0 for p < pM√

2

3

λ

1−M

(
Y

S0

)s0

for p ≥ pM

is the general damage evolution law. Furthermore, the local damage variable Msm

may never exceed the value of 1.0 as that would constitute mesoscale fracture [48].

However, it would be more feasible to assume that internal fracture may occur

before M = 1.0, thus a material property known as the internal critical damage

threshold otherwise known as the cracking threshold may be represented as Mcr,

thus the following also holds:

0 < M ≤ Mcr (4.73)

Global fracture may occur before all local integration points in the continuum have

undergone cracking, due to the interconnectivity of certain cracked points. Thus,

the smeared damage value Msm is also introduced to represent global damage -

computed by SESKA independently as a consequence of the geometry of local

integration points.



Chapter 5

Computational methods

5.1 Summary of the material damage model

Drawing from the previous chapter, where the model is introduced, the equations

that describe this model are defined as below. The continuum is assumed to deform

as is defined in conventional continuum mechanics as is in Chapter 2 and undergoes

a combined inelastic response to applied loading, the plastic response and the

damage response and the constitutive relations of the model are summarised here:

(i) The damage and plasticity-related thermodynamic quantities

Y =
||dev(Σ)||2

4G(1−M)2
+

[tr(Σ)]2

2K(1−M)2

R = −HZ − (σ∞ − σy) [1− exp (−ηZ)] .

(ii) The elastic constitutive law

Σ = (1−M)
[
K tr(αT )I+G dev(αT )

]
.

(iii) Yield (damage) function

f =
||dev(Σ)||
1−M

−
√

2

3
(σy −R) .

(iv) Evolution equations for all state variables (Lpl, Z and M)

Lpl = λ
∂f

∂Σ
= λ

dev(Σ)T

(1−M)||dev(Σ)||
= λNT

Ż = λ
∂f

∂R
=

√
2

3
λ

Ṁ =

√
2

3
λ
Ĥ(p− pM)

1−M

(
Y

S0

)s0

.

(v) Consistency conditions

47
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λ ≥ 0, f ≤ 0, λf = 0.

5.2 The computational work-flow

The work-flow within each simulation step maybe understand as preceding as in

the work-flow chart below follows:

START: Pre-setup of FE model

Get loading & boundary conditions at
each time increment ’n’ and FEM Dis-
cretisation of primary variables (u)

Compute elastic trial
strains using the elastic-

plastic predictor algorithms
(Cel)

trial, (α)trial Σtrial

Compute and check von Mises yield critrion, f ≥ 0 using as per Eq. (5.61)

f ≥ 0

Update plastic increment
∆λ and plastic multiplier
λj+1 using the Newton-
Raphson itertave update

Update elastic state
variables (Cel)n+1,

(α)n+1 and stress Σn+1

Update plastic rate Lpl, damage
variable Mn+1 and hardening

variable Zn+1 as per the
return-mapping algorthims

Store all variables for simulation step ’n+ 1’

Damaged plasticity

Yes

Elasticity

No

Figure 5.1: Work-flow chart within simulation step
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5.3 Finite element formulations

This section will show the weak forms used in the finite element framework of

SESKA. These principles are similar to those authors such as Omatuku-Ngongo

[32] and Hopkins [16]. The most relevant weak form to the context of this paper

is the momentum balance equation introduced in Section 2.5.3 which involves

the primary kinematic fields of displacement u, deformation measure F, and other

fields such as the Piola-Kirchhoff traction t0 and stresses S, P.

5.3.1 Weak form of momentum balance

In the computational sense, similar to the discussions in Section 4.2.1, the contin-

uum/material at time t = 0 is the material configuration at the start of a global

simulation step n+1 and the continuum at time t = t is the current configuration

at the end of the step. The intermediate configuration captures the continuum

under finite elastoplastic deformation at each iteration step j + 1 within a global

simulation step. From the context provided in Section 2.5.2, the global form of

the linear momentum balance equation for the reference continuum B0 in this case,

undergoing deformation χ is

pglobal
0 =

∫
Bt0

{Div (FS)− bt0 − ρt0v̇t0} dV = 0 (5.1)

where dV represents an infinitesimal volume in the reference configuration. It must

be mentioned that for purposes of structural analysis, kinematic effects are ignored

and any volume changes occur gradually such that the velocity/acceleration term

in Eq. (5.1) is ignored; thus v̇t0 → 0. The following relations also hold:

FS = P. (5.2)

If the arbitrary test function δu is the applied to Eq. (5.1), it yields the modified

global form as

pglobal
0 =

∫
B0

{ Div (P) · δu− b0 · δu } dV = 0. (5.3)

The test function δu in any sense pertains to the variation of the Dirichlet bound-

ary conditions such that u = û on ∂B0(D). In general, we define the variational

form of any variable field (•) as

δ(•) := ∂(•)
∂u

δu. (5.4)
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It is clear that the weak form pweak
0 may be obtained once the divergence theorem

and Green’s formula are applied to Eq. (5.3). Thus, the weak form of this balance

law is

pweak
0 =

∫
B0

P : Grad (δu) dV −
∫
B0

b0 · δu dV −
∫
∂B0

PN · δu dA = 0.

(5.5)

It may be decomposed further due to the Piola-Kirchhoff traction vector being

defined in the reference configuration as t0 = PN; t0 represents the Nuemann

boundary conditions. Thus, the weak form of the momentum balance equation is

pweak
0 =

∫
B0

P : δF dV −
∫
B0

b0 · δu dV −
∫
∂B0(N)

t0 · δu dA = 0. (5.6)

We must consider that there are multiple equivalent forms of the stress power term

— shown in Eq. (4.1). The weak form of the momentum balance using the 2nd

Piola-Kirchhoff stress tensor may thus be represented as

pweak
0 =

∫
B0

1

2
S : δC dV −

∫
B0

b0 · δu dV −
∫
∂B0(N)

t0 · δu dA = 0. (5.7)

All the presented expressions of this form is independent of a separate damage

term. However, damage is considered in the computation of the 2nd Piola-Kirchhoff

stress from theMandel stress and will be shown later in this chapter. Furthermore,

δC = δ(FTF) = GradT (δu) F+ FT Grad(δu). (5.8)

5.3.2 Spatial discretisation principles

For a continuum body of ne finite elements, its discretised form is written

B0 ≈
ne⋃
i=1

B0(j), (5.9)

with B0(i) being the material description of each element such that B0(i) ∈ B0.

Thus, the boundary of the body B0 is comprised of the areas of elements, since

these elements do not overlap then the boundaries are connected by either points,

lines or surfaces [47].

In this study, the spatial discretisation is such that the material configuration B0 is

mapped onto its corresponding finite elements through the general isoparametric
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spatial discretisation concept. With isoparametric discretisation, the same arbi-

trary shape/interpolation functions NI used to define the geometric shape of the

elements are utilised in approximating the displacement field u, its variational form

δu and incremental form ∆u in all configurations of the continuum [47]. Thus, we

define the following interpolation formulae for u, δu and ∆u as

uh =
Ne∑
I=1

NIuI , Grad(uh) =
Ne∑
I=1

∂NI

∂X
uI , (5.10)

δuh =
Ne∑
I=1

NIδuI , Grad(δuh) =
Ne∑
I=1

∂NI

∂X
δuI (5.11)

∆uh =
Ne∑
I=1

NI∆uI , Grad(∆uh) =
Ne∑
I=1

∂NI

∂X
∆uI , (5.12)

in which the iterative subscript I ∈ [1, 2, ..., Ne] such that Ne is the number of

nodes per element. This is defined in the material configuration.

In Eq. (5.9),
⋃

is an assembly operator — it indicates the union of finite entities.

Consequently, this concept is utilised to discretise the displacement field and its

dependent relations as

u =
ne⋃
i=1

uh(i), (5.13)

δu =
ne⋃
i=1

δuh(i), (5.14)

and

∆u =
ne⋃
i=1

∆uh(i). (5.15)

5.3.3 Linearisation of the weak form

In order to provide a more compact form of the weak formulation of momen-

tum balance in non-linear finite deformation applications, we utilise the spatial

discretisation principles and the original variational statement Eq. (5.5). Thus,

for each iteration step j + 1 within a global simulation step n + 1, the linearised

form of the momentum balance is obtained using a first-order Taylor -expansion

[47] approximated with the solution of the displacement field (uj)n+1 from the
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previous iteration step. Thus, the linearised form is the function of pweak
0 at this

displacement solution is

pweak
0

(
uj+1

)
n+1

= pweak
0

(
uj +∆uj+1

)
n+1

(5.16)

→ pweak
0

(
uj+1

)
n+1

= p0p
weak
0

(
uj
)
n+1

+
∂pweak

0

∂u

∣∣∣
uj
n+1

(∆uj+1)n+1. (5.17)

The incremental form of any primary variable field is described as

∆(•) := ∂(•)
∂u

∆u, (5.18)

thus we may obtain an expanded form of Eq. (5.17) as follows:

pweak
0

(
uj+1

)
n+1

=

∫
B0

FS : Grad (δu) dV

+

∫
B0

DF Grad (∆u) : F Grad (δu) dV +

∫
B0

Grad (∆u) S : Grad (δu) dV

−
∫
B0

b0 · δu dV −
∫
∂B0

t0 · δu dA = 0, (5.19)

whereby D is the tangent operator and is computed in the constitutive model (see

Section 5.5.4). Then

pweak
0

(
uj+1

)
n+1

=

∫
B0(e)

FS :
∂NI

∂X
δuI dV

+

∫
B0(e)

FTDF
∂NI

∂X
∆uI :

∂NI

∂X
δuI dV +

∫
B0(e)

∂NI

∂X
∆uI S :

∂NI

∂X
δuI dV

−
∫
B0(e)

b0 ·NIδuI dV −
∫
∂B0(e)

t0 ·NIδuI dA = 0. (5.20)

is produced when the interpolated forms of the displacement field Eq. (5.10), and

its variational Eq. (5.11) and incremental forms Eq. (5.12) are subsequently sub-

stituted into Eq. (5.19). This is evaluated at each element e adjacent to node

I

The condition pweak
0 = 0 leads to Eq. (5.20) taking the form of a discrete equation

system:
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(Kj+1)n+1(∆uj+1)n+1 = (fj+1
ext )n+1 − (fj+1

int )n+1, (5.21)

whereby (fj+1
ext )n+1 is related to the step-wise incremental, or static externally ap-

plied loads, (fj+1
int )n+1 is the stress response, and (Kj+1)n+1 is the stiffness matrix.

The residual vector r is introduced which is interpreted as the net force vector:

(rj+1)n+1 = (fj+1
ext )n+1 − (fj+1

int )n+1. (5.22)

All of the above formulations and equations consequently result in a discrete ex-

pression for the iterative solution scheme of the displacement field u as

(∆uj+1)n+1 = (Kj+1)−1
n+1(r

j+1)n+1, (5.23)

which is additively updated at the end of each iteration step j + 1 as

(
uj+1

)
n+1

=
(
uj +∆uj+1

)
n+1

. (5.24)

It must be noted that

(Kj+1)n+1 =

∫
B0(e)

FTDF
∂NI

∂X
:
∂NI

∂X
dV +

∫
B0(e)

∂NI

∂X
S :

∂NI

∂X
dV, (5.25)

(fj+1
ext )n+1 =

∫
B0(e)

b0 ·NI dV +

∫
∂B0(e)

t0 ·NI dA, (5.26)

and

(fj+1
int )n+1 =

∫
B0(e)

FS :
∂NI

∂X
dV. (5.27)

The norm of the residual vector r is then checked for convergence to ensure an

appropriately precise approximation and a smooth transition to consequent simu-

lation steps:

|| (rj+1)n+1 || < 1.0× 10−8. (5.28)
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5.4 Numerical treatment

5.4.1 Principles of the Newton-Raphson method

The Newton-Raphson method is a fast gradient method, which facilitates for esti-

mating an unknown root solution (•)i+1 of an arbitrary, known real-valued function

f(•) of variable(s) (•) given an initial value (•)i. The method is shown schemati-

cally in Figure 5.2.

Figure 5.2: Newton-Raphson method. The function space contains the possible
values a function may take and the solution space the possible values the inputs
to the function may take.

If both the unknown root solution and the initial value lie in the same 1D solution

space, the function tangent f ′(•)j is then used to estimate the value of the unknown

root solution at the point at which the function tangent crosses the solution space

from the initial value (•)j. It is illustrated mathematically as

(•)j+1 = (•)j+1 −
f(•)j
f ′(•)j

. (5.29)

The initial step is only a rough approximation. Therefore, it requires further j ∈ Z
local iterations within each global Newton-Raphson step n + 1 to achieve a finer

approximation of the true root value (•)rn+1 of the function f(•) [9]. Furthermore,

the residual R must be of acceptably low value between iterations to ensure an

accurate refinement. Thus, for each global simulation step n+ 1,

For each(n+ 1) | R < 1.0
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→ (•)rn+1 = iter
j ∈ Z

[
(•)j+1 −

f(•)j
f ′(•)j

]
. (5.30)

This iterative method is highly suitable for pure plasticity and damaged plasticity

applications as it is fast to iterate and fast to converge whenever there is the non-

linear phenomena of plasticity and this method is used directly for calculating the

plastic multiplier for each iteration. The fast convergence is dependent on the

increment of the load-factor.

5.4.2 Local time discretisation

During any time-dependent computational analysis, the time t controls the loading

and boundary condition information available as inputs into the equation solver.

Thus, as time elapses the material is continually loaded and deformed. If the

procedure in retrieving a solution in a simulation is time-dependent, there are

a possible n | n ≥ 0 simulation steps within a time interval and then the time

increment for each simulation step is considered as being

∆t = tn+1 − tn. (5.31)

Knowing this, the time integration of all secondary field quantities denoted with

placeholder a (such as Fpl,L,α) or scalar quantities denoted b (such as M or Z)

proceeds in the following general format [42]:

∆a = ∆tȧ, ∆b = ∆tḃ, (5.32)

in which each of these rate (ȧ, ḃ) are directly solved as per each quantities algorith-

mic implementation. These quantities update in each simulation step n | n ≥ 0 as

follows:

(a)n+1 = (a)n +∆a, (5.33)

bn+1 = bn +∆b. (5.34)

In this study, primary field quantities are the quantities discretised by the finite

element techniques whilst secondary quantities are updated algorithmically by the

constitutive model.
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5.4.3 Local iterative update of plastic multiplier

The plastic increment ∆λmay be defined as the incremental quantity governing the

evolution of all non-recoverable material deformation. The plastic multiplier λ is

the state of the plastic behaviour in the continuum. This study is focused towards

a Newton-Raphson based implementation, a gradient solution method. This is

in stark contrast to the types of direct solution techniques usually employed for

damage models in [5] and [30].

The plastic multiplier λ is dependent on the calculated stresses and strains in the

plastic range, which depend on the amount of deformation at a particular material

point within a simulation step n. The evolution of the plastic multiplier, is the

plastic increment and for rate-independent von Mises-based plasticity models it

may be computed using the von Mises yield function for which as follows:

∆λ = − f(
∂f
∂λ

) . (5.35)

Thus, the above equation is used in conjunction with Eq. (5.30) to produce the

update of the plastic multiplier as

λj+1 = λj +∆λ. (5.36)

This update mechanism depended on the return mapping algorithms for each of

the yield function and the the tangent of the yield function with respect to the

plastic multiplier, which are shown in Section 5.5.

5.5 Algorithmic implementation

5.5.1 Elastic-plastic predictor algorithms

Strain and strain-rate

The deformation gradient is a field quantity in this framework, and is decomposed

multiplicatively at all instances in time (see Section 4.2.1). This is because the

continuum B at any simulation step n is considered a reference configuration with

respect to the next simulation step n+1 - a Lagrangian approach. Therefore, the

plastic deformation gradient update is a mathematical consequence of this and is

(Fpl)n+1 = (Fpl)n∆Fpl. (5.37)
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It follows that in an isochoric (volume-preserving) finite inelastic deformation of

a material continuum Bn → Bn+1, the incompressibility constraint must always

apply on the plastic deformation gradient at this simulation step as follows

det(Fpl) = Jpl = 1. (5.38)

This directly implies that all plastic deformations are incompressible as well, i.e.

det(Fpl)n = 1, det(Fpl)n+1 = 1, and det(∆Fpl) = 1. It is clear that these matrices

are all are elements of the special linear Lie group SL(3, R) — which is a set of

square invertible matrices with determinant = 1 [7].

Using the time discretisation concepts of field quantities outlined in Eq. (5.33)

with the relation in Eq. (2.27), it may be seen that the the rate term, ∆Fpl, in

Eq. (5.37) decomposes as

∆Fpl = ∆ḞplLpl (5.39)

∆Fpl = ∆tFplLpl (5.40)

∆Fpl = Fpl∆tLpl. (5.41)

Since det(∆Fpl) = 1, then the important consequence is that det(Lpl) = 1; Lpl is

an element of the lie algebra of SL(3, R) and is trace-independent i.e. tr(Lpl) = 0

[39]. Thus, the exponential time-integration mapping is utilised for the plastic

strain-rate Lpl such that

∆Fpl = exp(∆tLpl), (5.42)

holds since det(∆Fpl) = 1. It also holds that det(exp(Lpl)), det(exp(∆tLpl)) = 1.

This information is fed into the relation in Eq. (5.37) and produces an algorithmic

update equation for the plastic deformation gradient as

(Fpl)n+1 = (Fpl)n exp(∆tLpl). (5.43)

Similarly, from the definition of the distortedHencky strain measureα = ln (C−1
pl C),

it follows that the plastic Cauchy-Green tensor is of the follow form:

(C−1
pl )n+1 = ∆F−1

pl (C
−1
pl )n∆F−T

pl . (5.44)

It is trivial to the formulate the following equation regarding the plastic Cauchy-

Green tensor as
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(C−1
pl )n+1 = exp(−∆tLpl)(C

−1
pl )n exp(−∆tLT

pl). (5.45)

Therefore,

(CC−1
pl )n+1 = (C)n+1 exp(−∆tLpl)(C

−1
pl )n exp(−∆tLT

pl), (5.46)

which directly leads to an elastic-plastic corrector step algorithm for the Hencky

strain as outlined in [39]

(αT )n+1 = ln[(CC−1
pl )n+1] (5.47)

(αT )n+1 = ln[(C)n+1 exp(−∆tLpl)(C
−1
pl )n exp(−∆tLT

pl)] (5.48)

(αT )n+1 = ln[(C)n+1(C
−1
pl )n exp(−2∆tLT

pl)] (5.49)

(αT )n+1 = (αT )trial − 2∆tLT
pl. (5.50)

The plastic rate of deformation tensor, Lpl is derived using the time integration

principles in Section 5.4.2 and the plastic strain-rate tensor as per the associative

flow rule and is presented algorithmically as

Lpl = λj+1
dev(Σtrial)T

(1−M)n+1||dev(Σtrial)||
= λj+1N

T . (5.51)

Mandel stress

As the assumption of full isotropy of the material body is maintained, the Hencky

strain and its corresponding Mandel stress measure are co-axial. This is similar

to the manner in the Green-Lagrange strain tensor and the Cauchy stress tensor

are interpreted.

Therefore, the Mandel stress tensor may be updated as in Eq. (5.52) — it must be

taken into account that the material stiffness and strength moduli are degraded

uniformly as damage evolves. The damage residual (1 − M)n+1 is incorporated

into the equation as per the elastic constitutive relations in Section 4.3.

Σn+1 = (1−M)n+1

[
K tr(αtrial)T I + G dev(αtrial)T − 2G∆tLT

pl

]
(5.52)

which decomposes into

Σn+1 = Σtrial − 2G(1−M)n+1∆tλj+1N (5.53)
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and then

Σn+1 = Σtrial − 2G∆tλj+1
dev(Σtrial)

||dev(Σtrial)||
. (5.54)

since the flow vector N is computed as

N =
dev(Σtrial)

(1−M)n+1||dev(Σtrial)||
. (5.55)

Therefore for all computations requiring the plastic rate of deformation tensor shall

also require the trial stress to be computed and used in the equations therefore. All

the tensors computed using the return-mapping algorithms are further decomposed

into index notation in Appendix A.

5.5.2 Return mapping algorithms

Inelasticity

The return mapping algorithms for the internal state variables: damage and plastic

hardening, depend directly on the plastic increment as is shown in Section 4.7.4.

The plastic hardening state variable Z, is a scalar function of the the plastic

multiplier, λ updates as

Zn+1 = Zn +

√
2

3
∆tλj+1, (5.56)

∂Zn+1

∂λ
=

√
2

3
∆t. (5.57)

In a similar vein, the damage variable M , with its evolution as shown in Sec-

tion 4.7.4 may be updated as in accordance with the time integration principles

as per this study:

Mn+1 = Mn +

√
2

3

∆tλj+1

(1−M)n+1

(
Yn+1

S0

)s0

for p > pM . (5.58)

Furthermore, the damage variable tangent may be defined as follows:
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∂Mn+1

∂λ
=

√
2

3
∆t

[
1

(1−M)n+1

(
Yn+1

S0

)s0

+

(
∂M
∂λ

)
n+1

λj+1

(1−M)2n+1

(
Yn+1

S0

)s0

+
s0
S0

λj+1

(1−M)n+1

(
Yn+1

S0

)s0−1
∂Yn+1

∂λ

]
. (5.59)

This tangent is incorporated in the yield function tangent update which is then

utilised in the Newton-Raphson scheme. Following the computation of the material

stress, the modified von Mises yield equation may be represented thereof. The

hardening state variable Z is represented by Zn+1 in the yield equations:

f =
||dev(Σn+1)||
(1−M)n+1

−
√

2

3
(σy −Rn+1) = 0 (5.60)

then, the yield equation takes the form of

f =
||dev(Σtrial)|| − 2G∆tλj+1

(1−M)n+1

−
√

2

3
(σy −Rn+1) = 0. (5.61)

As for the properties governing material hardening, these may be updated within

this framework as below, whereby the hardening stress-like variable R introduced

in Section 4.7.3 is

Rn+1 = −HZn+1 − (σ∞ − σy) [1− exp (−ηZn+1)] (5.62)

with its tangent with respect to plastic multiplier λ, vital to the algorithmic im-

plementation, defined as

∂Rn+1

∂λ
=

∂Rn+1

∂Zn+1

(
∂Zn+1

∂λ

)
= −

√
2

3
∆t [H + η(σ∞ − σy) exp (−ηZn+1)] .

(5.63)

Going back, the yield function tangent is approximated as the partial differential

of the yield functions and the plastic multiplier may be expressed as

∂f

∂λ
= − 2G∆t

(1−M)n+1

−
2G∆tλj+1

(
∂Mn+1

∂λ

)
(1−M)2n+1

+

√
2

3

∂Rn+1

∂λ
. (5.64)
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It would be useful to know the yield function tangent with respect to the Mandel

stress tensor, as this tangent may be used in further calculations to satisfy the

Newton-Raphson predictor update of the plastic multiplier.

∂f

∂Σtrial
=

1

(1−M)n+1

∂(||dev(Σtrial)||)
∂Σtrial

− ∂λ

∂Σtrial

 2G∆t

(1−M)n+1

+
2G∆tλj+1

(
∂Mn+1

∂λ

)
(1−M)2n+1

−
√

2

3

∂Rn+1

∂λ

 , (5.65)

whereby, from Eq. (5.51), it is seen that

∂(||dev(Σtrial)||)
∂Σtrial

= (1−M)n+1N
T . (5.66)

Thus, the following relation also holds:

∂λ

∂Σtrial
=

NT 2G∆t

(1−M)n+1

+
2G∆tλj+1

(
∂Mn+1

∂λ

)
(1−M)2n+1

−
√

2

3

∂Rn+1

∂λ


. (5.67)

Damage-related variables

From the constitutive model as summarised in Section 5.1, the stress-like variable,

Y , that is associated with damage is a scalar function of the damage variable M .

Yn+1 =
||dev(Σn+1)||2

4G(1−M)2n+1

+
[tr(Σn+1)]

2

2K(1−M)2n+1

(5.68)

However, in this algorithmic implementation it is also a function of the plastic

multiplier λ in this algorithmic implementation. We may apply the return mapping

algorithm to this variable as follows:

Yn+1 =

[
||dev(Σtrial)||2− 4G∆tλj+1||dev(Σtrial)||+4(G∆tλj+1)

2
]

4G(1−M)2n+1

+

[
tr(Σtrial)

]2
2K(1−M)2n+1

(5.69)
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The trace and deviatoric portion of the Mandel stress Σ are decomposed as shown

in Eq. (4.21). Thus the final algorithmic implementation of the damage energy

density release rate is

Yn+1 =
||dev(Σtrial)||2

4G
+

[tr(Σtrial)]2

2K

− ∆tλj+1||dev(Σtrial)||
(1−M)n+1

+
G(∆tλj+1)

2

(1−M)2n+1

. (5.70)

its tangent may then be computed to incorporate in the damage variable tangent

and thus satisfies the Newton-Raphson update of the plastic multiplier -

∂Yn+1

∂λ
= −∆t||dev(Σtrial)||

(1−M)n+1

−
(
∂M
∂λ

)
n+1

∆tλj+1||dev(Σtrial)||
(1−M)2n+1

+
2G(∆t)2λj+1

(1−M)2n+1

+
2
(
∂M
∂λ

)
n+1

G(∆tλj+1)
2

(1−M)3n+1

. (5.71)

5.5.3 Piola-Kirchhoff stress computation

The stress update framework for this model is based on that in [39] and the finite

element framework in SESKA. In this material damage model, the Mandel stress

tensor Σ is computed as a function of the Hencky logarithmic strain α. However,

such a stress tensor is only used due to its work conjugacy with the plastic strain-

rate tensor Lpl and that it can be pulled back to compute the 2nd Piola-Kirchhoff

stress. In the SESKA finite element framework, the 2nd Piola-Kirchhoff stress

tensor S is used to record and characterise stresses with the Lagrangian approach.

From Eq. (4.20), S is related to the right Cauchy-Green tensor C as

S = C−1Σ, (5.72)

and after substituting Eq. (5.54) into this expression, the following is true:

S = C−1(Σtrial − 2G(1−M)∆tλNT ). (5.73)
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5.5.4 Algorithmic tangent operator

The 2nd Piola-Kirchhoff stress tensor is used to characterise stresses in the refer-

ence state of a material and is work/power conjugate to the right Cauchy-Green

tensor C. The tangent operator D is obtained by linearising S with respect to C:

D =
∂S

∂C
. (5.74)

The algorithmic implementation of the tangent operator for the 2nd Piola-Kirchhoff

stress is as follows:

∂S

∂C
=

∂(C−1(Σtrial − 2G(1−M)∆tλNT ))

∂C
, (5.75)

which is expanded and represented in tensor notation as

∂S

∂C
=

∂C−1

∂C
(Σtrial − 2G(1−M)∆tλN) + C−1∂Σ

trial

∂C

− 2G(1−M)∆t
∂λ

∂Σtrial

∂Σtrial

∂C
C−1NT − 2G(1−M)∆tλC−1 ∂NT

∂Σtrial

∂Σtrial

∂C
(5.76)

The following relations apply for the right Cauchy-Green tensor, which follow from

the fundamental properties of a tensor

∂C−1

∂C
= −C−1C−1 (5.77)

For the trial Mandel stress, and its derivative with respect to the right Cauchy-

Green tensor:

∂Σtrial

∂C
=

∂Σtrial

∂α

∂α

∂C
= (1−M)

[(
K − 1

3
G

)
C−1I + GC−1I

]
(5.78)

Also, the ∂λ/∂Σtrial term in Eq. (5.76) is previously outlined equations in Eq. (5.67).

Finally, the ∂NT/∂Σtrial term is

∂NT

∂Σtrial
=

(1−M)

||dev(Σtrial)||

(
1 : 1− 1

3
1 : 1−NT : NT

)
(5.79)

whereby 1 is an a all-ones matrix as defined in Eq. (2.2).
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The final form of the consistent tangent operator algorithm may be produced

by inserting all the derived quantities in Eq. (5.77), Eq. (5.78), Eq. (5.67) and

Eq. (5.79). This final form is represented in index notation Appendix A.
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Results and example simulations

Running simulations using this proposed material damage model is crucial to es-

tablishing a basis for any further progress as part of this study. The proposed

model is of strongly coupled elastoplasticity and ductile damage — as outlined by

Skrzypek & Ganczarski [43], strong coupling of damage is when the damage vari-

able affects both the constitutive formulation and the inelastic response as part of

the overall numerical implementation. It is evident that the constitutive formu-

lation ( Section 4) and subsequent implementation ( Section 5) explicitly present

this model as a strongly coupled model.

Examples will be assessed per the typical material parameters of the specific ma-

terials under study. Furthermore, it will be important to provide as much analysis

based on the concepts within continuum mechanics as well as structural mechanics

and analysis, in assessing model predictions. Even though our framework is strictly

limited to three-dimensional formulations, it shall be shown that two-dimensional

examples are also well within the scope of this model. Universal assumptions made

are as follows: all gravity or other body-related forces are considered annulled, all

heat sources, heat fluxes are considered annulled and all kinematic effects (such

as translational velocity or acceleration are considered annulled). This section

intends to assess pure external loading/displacement scenarios. All problems are

simulated on UCT HPC Cluster and then post-processed in SESKA, all boundary

conditions are assigned in GiD1. Lastly, all examples use 1st-order (linear) shape

functions for functional approximation.

6.1 Tip-loaded cantilever beam

A cantilever beam is a structural element most commonly used in buildings as

balconies, overhangs, and bridges. Such a structural element is well-studied. The

bending of a cantilever beam may be used to present the intricacies of the material

damage model, and to compare and related it to undamaged plasticity. Thus, this

example uses a cantilever beam specimen with both damaged and undamaged

plasticity considerations.

1GiD is a pre- and post-processing program for finite element-based analysis. It allows for
users to discretise boundary conditions, material properties and simulation parameters in con-
junction with the SESKA framework.

65
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6.1.1 Problem setup, meshing and boundary conditions

The beam is assumed to have a length of Lbeam = 10 m, with depth hbeam = 1 m

and width wbeam = 1 m. The free end of the cantilevered beam is subject to a

surface traction loading condition. The simulation is displacement-controlled at

Point p0 on the beam such that displacement is always a maximum at the free-end

of the beam; the simulation is programmed to end at a z-axis displacement of

uz,max = 4.776 m.

The other end of the beam is fixed to a wall, and thus all degrees of freedom are

assumed to be = 0. By the way of the problem set-up, setting all displacement

degrees of freedom = 0 thus sets all rotational degrees of freedom = 0 at the fixed

end in tandem.

Figure 6.1: Mesh, problem configuration & boundary conditions. The cantilever
beam model used a 3D mesh of 80 hexahedral volume elements. The fixity and
loading conditions are shown.

The FEMmesh is shown as in Figure 6.1, which has 80 hexahedral volume elements

and 168 quadrilateral surface elements. The mesh is fairly finer than those seen

in previous literature such as [15] where they used 10 hexahedral/cubic volume

elements.

To control the evolution of displacement in this model, the loading is displacement-

controlled at the point p0 as shown in the cross-section of the cantilevered beam

such that the displacement is always at a maximum at the loaded end of the

beam. This is also the case in literature such as [15] — in a brief departure from

the context of this study, a damage-free elastoplastic material model was used in

Hopkin’s paper to assess a geometrically identical cantilevered beam to the one in

this study.
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Lastly, the load is applied statically, so much so that all analysis performed is static.

Thus, allowing for a pure analysis of cumulative monotonic material behaviour.

6.1.2 Material properties

For the cantilever beam model, the material being analysed is steel, a ductile ma-

terial for which the behaviour is well-established. Notably, for the sake of this

analysis, local damage is assumed to initiate as immediately as plasticity com-

mences. Thus, the requirement is zero accumulated plastic strain for observation

of damage phenomena. This also applies to strain/work hardening, as soon as

plasticity commences the material may start to harden or soften accordingly.

Thus, the material properties for the elasticity applications are shown as in Ta-

ble 6.1 together with those relevant to plasticity and Lemaitre-based damage and

non-linear exponential-based isotropic hardening are as in Table 6.1.

Table 6.1: Material properties of cantilever beam.

Elasticity

Bulk modulus, K 164.206 GPa
Shear modulus, G 80.1938 GPa

Yielding

Yield stress, σy 450.0 MPa
Rupture stress, σ∞ 715.0 MPa

Hardening

Hardening modulus, H 129.0 MPa
Hardening saturation stress, η 16.92

Damage

Damage strain threshold, pM 0.0%
Internal cracking threshold, Mcr 1.0
Damage strength, S0 3.5 MPa
Damage energetic exponent, s0 1.0

6.1.3 Load-deformation analysis

As a natural consequence of the applied loading, any downwards applied load-

ing/imposed deformation causes bending of any beam. Thus, in the bending of a

cantilevered beam, the applied downwards load at the free edge of the beam causes

an incremental downwards displacement along the length of the beam, Lbeam. In

both the undamaged and damaged plasticity simulations, the loading causes an

initial state of three-dimensional stress in the beam, as is shown in Figure 6.2 as

the downwards deformation increases from uz = 0 m → uz = 1 m.
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(a) (b)

Figure 6.2: Deformation in the z-axis (bending) compared with deformation in
the x-axis from uz : 0m → 4.776m. Left-side is the damaged plasticity simulations
and right-side is the undamaged plasticity.

Figure 6.3: Damaged vs Undamaged Plasticity, Load vs Deformation in the
Vertical z-axis up to vertical displacement uz = 4.776 m at Point p0.

As deformation in the z-axis (vertical) exceeds approximately 1.0 m, a state of

direct compressive deformation of the axial dimension in the beam is induced in

both simulations and this is shown in Figure 6.2); both the damaged plasticity and

undamaged plasticity models exhibit a considerable amount of x-axis compression

(i.e. shortening along the axial dimension of the beam). Figure 6.2 also shows

how the damaged simulations are generally more time-intensive — the simulation

progression is scaled from start at value 0 in the graph to the end with value 1.
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It is notable for the damaged simulation that there is significant damage softening

behaviour in the beam as direct compressive deformation is induced, as seen by

the continually decreasing ∂Pz/∂uz curve as z-axis displacement proceeds from a

value of uz ≈ 2.365m to the end of the simulation as illustrated in Figure 6.3.

The maximum load point is also observed as occurring earlier in the damaged

scenario and the damaged beam model carries less load due to the cumulative

damage that occurs throughout its plastic load-deformation regime. Furthermore,

the damaged simulation observes a loss in load-carrying capacity faster than it

would with damage being unaccounted for. This behaviour is as expected and is

shown in Figure 6.3 and Table 6.2 — in general, a damaged material carries load

for shorter amounts of time than undamaged materials [25].

Table 6.2: Material behaviour at peak loading at Point p0.

Scenario Maximum Load, Pmax z -axis Deformation
at Pmax

Pure Plasticity 36.194 kN 4.776 mm

Damaged Plasticity 22.983 kN 2.370 mm

6.1.4 Analysis of stress and strain localisation

It is helpful to compare the stresses and strain developed in the material using

the damaged and undamaged plasticity constitutive laws, respectively. With the

cantilever beam model, the traction applied at the cross-section of the free edge

causes bending, as the load and its accompanying turning effect (due to the full

fixity at the fixed end of the beam) is transferred through the beam and to the

support, which must then induce internal reactions at the loading/support as this

load is transferred.

Thus, it is possible to observe and predict the regions in the beam that may be

subject to the highest amounts of stress and strain, as well as the areas in the beam

that are damaged. In Figure 6.5, it may be observed that at lower displacements,

there is the prevalence of plastic/weakness zones in the structure by assessing the

damage plot. Accumulated plastic strain induced in the damaged cantilever beam

at uz = 2.365 m is also shown, which indicates that the highest amount of strain

is observed in the unsupported region of the beam immediately aft of the fixed

end as shown in Figure 6.6.

It may also be observed that in both cases shown in Figure 6.7 and Figure 6.8, the

maximum stress induced in the beam is at most proximal to the support fixity. The

maximum stress must occur in the region in the beam that is immediately aft of the

support, approximately within a distance of 0.2 m from the support; these regions
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are closest to the fixed support. This behaviour is typical of overhanging structural

elements, as failure is often observed immediately aft of the support where bending

moment and stresses are highest. Furthermore, the extension noticed induces the

largest stresses at the support.

Figure 6.4: Smoothed damage variable contour plot for the cantilever beam model
at vertical displacement uz = 2.365 m. Damaged plasticity with isotropic harden-
ing.

Figure 6.5: Equivalent plastic strain smoothed contour plot for the cantilever
beam model at vertical displacement uz = 2.365 m. Pure plasticity with isotropic
hardening.
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Figure 6.6: Equivalent plastic strain smoothed contour plot for the cantilever
beam model at vertical displacement uz = 2.365 m. Damaged plasticity with
isotropic hardening.

Figure 6.7: Effective stress plot smoothed contour plot for the cantilever beam
model at vertical displacement uz = 2.365 m. Pure plasticity with isotropic hard-
ening.

Figure 6.8: Effective stress plot smoothed contour plot for the cantilever beam
model at vertical displacement uz = 2.365 m. Damaged plasticity with isotropic
hardening.
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6.2 3-point bending of simply supported slender

square bar

6.2.1 Problem description

This example follows from a similar example assessed by Mohamad-Hussein &

Shao [31] in which they modelled concrete. However, only the general analyti-

cal principles will be employed here; the damage laws and framework in [31] are

different to that proposed in this study.

Square bars are often used as standard test specimens in the field of structural en-

gineering to test the material properties of metallic and non-metallic components,

such as mild steel, concrete and other composite materials. Thus an arbitrary

metallic material is assumed as the modelled continuum in this example, and the

material properties will be shown.

Figure 6.9: Schematic representation of the slender bar bending example.

Furthermore, the significance of this 3-point bending example is to compare the

effect that the damage strength parameter may have on the overall load-carrying

capacity of a simply supported slender bar in pure bending. In addition, the

requirement and objective of simulating 3-point bending in a slender member is to

provide qualitative analysis on the potential weak zones in a 3-point bending test

by utilising the post-processed results of simulations run with the implemented

material damage model.

The essential configuration of this example is shown in Figure 6.9 and will be

further elaborated in Section 6.2.3. It must be observed that for this analysis, the

damage variable remains unrestricted in its evolution.

6.2.2 Material properties

Ductility is ensured in that rate effects are ignored. Damage commences as soon as

plasticity commences. This applies to the strain/work hardening in this scenario

as well. As it pertains to elasticity, the arbitrary material has an Elastic modulus,
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Table 6.3: Material properties of slender square bar.

Elasticity

Bulk modulus, K 38.8889 GPa
Shear modulus, G 29.1667 GPa

Yielding

Yield stress, σy 243.0 MPa

Rupture stress, σ∞ 243.0 MPa

Hardening

Hardening modulus, H 200.0 MPa

Damage

Damage strain threshold, pM 0.0%
Internal cracking threshold, Mcr 0.8

1.50 MPa
Damage strength values, S0 1.25 MPa

1.00 MPa
Damage energetic exponent, s0 1.0

E = 70.0 GPa and a Poisson’s Ratio, ν = 0.20. In this scenario, the hardening is

assumed as isotropic linear hardening. The material properties for the von Mises

elasticity applications are shown as in Table 6.3 together with those relevant to

Lemaitre-based damage and linear isotropic hardening.

6.2.3 Meshing and boundary conditions

The slender square bar has length Lbar = 3000 mm, depth hbar = 300 mm. The

bar is roller-supported - the two opposite ends of the bar are considered fixed in

the z-direction. Thus, vertical displacement is completely restricted at the ends

of the bar whilst allowing motion in the x-direction. This allows for free longitu-

dinal deformation at the supported ends and disallow excessive stretching of the

bar along its length. However, rigid-body translation in the x-direction (longi-

tudinal direction) of the entire continuum of the slender square bar is restricted

by introducing a fixity at the bottom of the bar at mid-span to serve this intent.

Rigid-body translation is not part of the context with this study.

The FEM mesh is shown as in Figure 6.10, with 80 hexahedral volume elements

and 172 quadrilateral surface elements. Plane strain conditions are enforced by

restricting all degrees of freedom in the transverse y-direction. Effectively, the part

of the bar necessary for this analysis is that which is extant in the xz-plane.

To facilitate bending, a downwards vertical concentrated load is applied at the bar

mid-span as shown in Figure 6.10. In order to control the evolution of displacement

in this model, the FEM mesh is displacement-controlled at the load point as shown
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Figure 6.10: Mesh, problem configuration & boundary conditions. The roller-
supported bar model used a 3D mesh of 80 hexahedral volume elements and 172
quadrilateral surface elements.

in the cross-section of the bar such that the displacement is always at a maximum at

a point on the bottom of the member at mid-span. The problem is post-processed

in SESKA, and boundary conditions are discretised in GiD.

6.2.4 The effect of damage energetic strength on load-carrying

capacity

It is possible to assess the effect of the damage energetic strength variable, S0.

This variable is a thermodynamic property as is mentioned in Section 4.7 in that

it varies with temperature. Ductile materials at higher temperatures will have

lower damage strength, as material particles hold higher energy quanta and thus

require little in the way of displacement to trigger micro-defect nucleation in the

microstructure. However, this model is isothermal — dynamic temperature effects

are ignored.

Still, this study will select values for the damage energetic strength. These were

outlined in Table 6.3 as S0 = 1.50 MPa, 1.25 MPa and 1.00 MPa. By analysing

the damage laws, one may predict that the lower the value of the damage strength,

then the lower the overall load-carrying capacity of the bar at any given displace-

ment within the plastic range of stress-strain and load-deformation behaviour.

Furthermore, as seen in [30], 3-point beam bending yields a bell-shaped load-

deformation curve; this is due to the induction of plasticity and then a gradual

material softening as the deformation increases.

In Figure 6.11, the load-deformation analysis of this problem is illustrated. It is

clear that as deformation increases from 25 mm, all three iterations of the model

exhibit gradual plastic behaviour. However, at the top of each load-deformation

plot, it is observable that a loss of load-carrying capacity is prevalent. As is
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Figure 6.11: Damaged vs Undamaged Plasticity, Load vs Deformation in the
z-axis up to vertical displacement uz = 200 mm at Point p0.

seen with the cantilever beam tip bending example, damaged plasticity generally

simulates lower loads for the same displacement.

Table 6.4: Material behaviour at maximum loading at Point A.

Scenario Maximum Load, Pmax z -axis Deformation
at Pmax

S0 = 1.50 MPa 512.61 kN 102.61 mm

S0 = 1.25 MPa 494.43 kN 93.88 mm

S0 = 1.00 MPa 473.81 kN 84.22 mm

With damage strength value S0 = 1.50 MPa, the damage progresses slower than the

damage strength values S0 = 1.25, 1.00 MPa as is observed in Figure 6.11. That

is the same for the comparison of the bending bar iteration with damage energetic

strength S0 = 1.25 MPa compared to that of S0 = 1.00 MPa. Overall, the loss of

load-carrying capacity is less exaggerated in materials with higher damage strength

in contrast to those with lower damage strength values as would be expected

as per the fundamental nature of material damage — material damage tends to

progress faster in weaker materials or materials with pre-existing micro-voids when

in tension or bending loading conditions.

The onset of softening is observed at different vertices for each iteration of the

damage energetic strength, as is shown in Figure 6.11 and Table 6.4. In general,

the behaviour predicted by the model is expected, and qualitatively, it fits in with

the general pattern of the load-deformation relation in 3-point bending tests as is

shown in [31].



Chapter 6. Results and example simulations 76

6.2.5 Analysis of damage evolution and cracking

Figure 6.13 shows the smoothed damage variable line plot for S = 1.25 MPa at

Point A, which is the load point on the bar specimen undergoing 3-point bending in

this model. This particular illustration indicates that damage continues to evolve

from a vertical downwards displacement of 25 mm and through to the end of the

simulation at 200 mm.

The smoothed damage value, Msm is not restricted in this simulation and exceeds

the value of 1.0. However, It must be noted that internal (Gauss integration

point) cracking detection is observed at a vertical displacement of 115.16 mm —

the internal cracking threshold was predefined asMcr = 0.8 in Table 6.3. The value

of the smoothed damage variable holds the value of 0.9914 at this displacement at

the load point (Point A).

Figure 6.12: A line plot of the evolution of smoothed damage variable at Point A
on the bar vs the z-axis deformation (downwards) at Point A on the bar. S = 1.25
MPa.

Furthermore, Figure 6.13 shows the nature of the time-relative evolution of the ver-

tical displacement and the smoothed damage variable at the load point (Point A).

It is evident from this graph that the damage evolution is highly non-linear in all

phases. Qualitatively, the first phase of the simulation indicates much more time-

consuming Newton-Raphson iteration steps, where the time increment is larger

in comparison to the displacement increment, and the second phase indicates the

opposite. Still, the damage evolution is highly non-linear compared to the linear

evolution of displacement at Point A.
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Figure 6.13: A line plot of the time evolution of smoothed damage variable and
the the z-axis deformation (downwards) at Point A on the bar. S = 1.25 MPa.

Figure 6.14: Smoothed damage variable contour plot for the simple beam model
at vertical displacement uz = 115.16 mm. Damaged plasticity with S0 = 1.25
MPa.

6.2.6 Generalised damage distribution in the bar

The general nature of damage distribution in the bar is shown in Figure 6.15 at

z-axis displacement of 100 mm and damage strength, S0 = 1.00 MPa. The mate-

rial damage is highly concentrated towards the mid-span of the bar — specifically

around Point A. This strongly indicates that the region around Point A is a po-

tential failure/weakness zone. The data for damage strengths S0 = 1.25 MPa and

S0 = 1.50 MPa are in Figure 6.16 and Figure 6.17, respectively.
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Thus, it is possible to observe the regions in the bar that may be considered as

weak zones and to compare this qualitatively to previously observed results in

similar testing/simulations from literature. The plastic-damaged zones are at the

load application point as there is the prevalence of plastic/weakness zones in the

member by assessing the damage variable plot contour plot. This is due to the

fact that the bar is in a state of compression in the top of the beam. Coinciden-

tally, bending a bar in this manner produces tension in the bottom portion of the

member. Thus, it is observable how the damaged zones are also in the bottom

part of the bar at mid-span. This is in conjunction with the results in [31].

Furthermore, shown in Figure 6.18 is the line plot of the smoothed damage variable

vs the x-axis distance from midspan. This information is retrieved for a z-axis

displacement of uz = 100 mm in the bar. This graph also compares the damage

concentration for each of the different values of S = 1.00, 1.25, 1.50 MPa as is

illustrated.

Figure 6.15: Smoothed damage variable contour plot for the 3-point bending bar
model with S0 = 1.00 MPa at vertical displacement uz = 100 mm.

Figure 6.16: Smoothed damage variable contour plot for the 3-point bending bar
model with S0 = 1.25 MPa at vertical displacement uz = 100 mm.



Chapter 6. Results and example simulations 79

Figure 6.17: Smoothed damage variable contour plot for the 3-point bending bar
model with S0 = 1.50 MPa at vertical displacement uz = 100 mm.

Figure 6.18: Smoothed damage variable line plot along the bar’s x-axis dimen-
sion, with distance shown from the mid-span at vertical deflection of uz = 100mm.

6.3 Uniaxial plane tension of 3D solid plates with

different thickness

6.3.1 Problem configuration

In order to compare and contrast the specimen size dependency of this model,

an example often used in literature for showcasing the capabilities of finite strain

models is the uniaxial tensile testing of a plane plate. This example is similar

to that in [44] and [5] which use a two-dimensional shell example to exemplify

their implementation of Lemaitre′s damage laws and use an entirely different

evolution scheme damage behaviour. The example is also in [41] for viscoplastic

two-dimensional shells.
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Figure 6.19 provides the schematic representation of this example, which consists

of a plate of height Hplate = 53.334 mm, width Wplate = 12.826 mm. The depth

of the plate will be rendered at different values Dplate = 1.0, 2.0, 3.0 mm.

Boundary conditions are as follows: both ends of the cylindrical bar are given

a uniaxial displacement uz, with no lateral constraint. Thus, there are no rigid

fixities at either end. The uniaxially applied displacement is normal to the surface

at each end. In order to maintain statical determinacy and remove any kinematic

degrees of freedom, the plate is assumed to have rigid fixities coincident with

each plane of symmetry. Thus, the vertical plane of symmetry embodies a lateral

constraint, and the horizontal plane of symmetry embodies a vertical constraint

on motion.

Figure 6.19: 2D schematic representation of the solid plane under tension exam-
ple. (Units = mm)

6.3.2 Material properties

For this plate plane tension example, the material being analysed is steel, a ductile

material for which the behaviour is well-established and material properties may

be reasonably guessed through arbitrary methods and through literature. Damage

onset is once again coincident with the onset of plastic yielding, as was the case in

the examples in Section 6.1 and Section 6.2. Thus, pM = 0.0% for an observation

of damage phenomena.

Work/strain hardening is also coincident with the onset of plastic yielding. The

material properties for all iterations of this example are the same — all plate
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thickness iterations have the same elasticity, plasticity and damage parameters

and applications as in Table 6.5. Once more, non-linear exponential-based isotropic

hardening laws are used to approximate strain hardening.

Omitted from Table 6.5 are the Elastic modulus, E = 206.9 GPa and the Poisson’s

ratio, ν = 0.29, which are not intrinsic to the implemented material model but

rather are used to calculate the bulk modulus K and shear modulus G accordingly.

Table 6.5: Material properties of solid plate [44].

Elasticity

Bulk modulus, K 164.206 GPa
Shear modulus, G 80.1938 GPa

Yielding

Yield stress, σy 450.0 MPa
Rupture stress, σ∞ 715.0 MPa

Hardening

Hardening modulus, H −12.924 MPa
Hardening saturation parameter, η 16.93

Damage

Damage strain threshold, pM 0.0%
Internal cracking threshold, Mcr 1.0
Damage strength, S0 1.25 MPa
Damage energetic exponent, s0 1.0

6.3.3 Meshing and boundary conditions

Only a quarter of the plate is discretised due to the existence of 2 planes of symme-

try in Figure 6.19. Thus, the dimensions of the plate change to hplate = 26.667mm,

width wplate = 6.413 mm at the top of the the quarter portion of the plate and

depth dplate. Necking behaviour is expected to occur at the base of the quarter

plate and thus, we induce a geometric imperfection for necking behaviour: the

width is reduced to 98.1% at the base of the quarter plate. This reduction in

width is applied linearly from a height of 6.413 mm above the base of the quarter

plate portion and this constitutes a new problem definition and setup.

Given the new problem definition, two Dirichlet surface boundary conditions are

applied to account for symmetry. To account for the xy-plane symmetry, a vertical

(z-axis) fixity is applied at the base of the plate. A y-axis fixity is applied at the

vertical face coinciding with yz-plane. The boundary conditions are shown in each

figure. Furthermore, the entire volume is subject to an x-axis fixity to enable three-

dimensional plane strain conditions. The tensile loading is applied by placing a

Neumann surface traction condition at the top of the quarter plate, controlled by
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vertical displacement controls at each corner of the loaded surface to assure that

the entire surface is deformed uniformly.

For the scenario with dplate = 1.0 mm, the plate is meshed roughly with 50 vol-

ume elements and 135 surface elements as shown in Figure 6.20. There are 100

volume elements and 220 surface elements for the scenario with dplate = 2.0 mm

which is shown in Figure 6.21. Lastly, Figure 6.22 shows the plate is meshed with

150 heaxahedral volume elements and 305 surface elements for the scenario with

dplate = 3.0 mm. All volume elements are hexahedrals and surface elements are

quadrilaterals.

Figure 6.20: Mesh & boundary conditions in the quarter model of the plate in
uniaxial tension with dplate = 1.0 mm. The fixity and displacement conditions are
shown.

6.3.4 Load-deformation analysis

An applied surface tension at the top surface of the plates will cause an axial

tensile deformation in the quarter plate in the z-axis. Due to the vertical z-axis

constraint at the lower surface of the quarter plate and the lateral y-axis constraint,

an accompanying transverse displacement is induced that varies with height along

the z-axis dimension of the quarter plate. This is a virtue of the principle of

incompressibility (volume preservation) of solid materials, which is the foundation

of this damage implementation i.e. J = 1.

In Figure 6.23, yielding is observed at the same vertical displacement for the plate

with thickness 1.0 mm, 2.0 mm and 3.0 mm. This indicates that the axial yield

strain is similar amongst all three plate thickness iterations. However, the yield

stress is the same — the tensile yield load is larger with the thicker plate specimens.
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Figure 6.21: Mesh & boundary conditions in the quarter model of the plate in
uniaxial tension with dplate = 2.0 mm. The fixity and displacement conditions are
shown.

Figure 6.22: Mesh & boundary conditions in the quarter model of the plate in
uniaxial tension with dplate = 3.0 mm. The fixity and displacement conditions are
shown.

It is observable from Table 6.6 that the peak load induced in the specimen holds a

larger value for the larger plate thickness dplate = 3.0 mm in contrast to the lower

peak load in the smaller plates. This is in spite of the reality that the ultimate

tensile strength of the material, σ∞, is the same for all dplate iterations.

Observable in the damage softening behaviour of each plate thickness scenario is

a steep drop-off in load-carrying capacity past the value of ≈ 3.3 mm vertical top

displacement. Qualitatively, due to the nature of the plasticity simulation and

convergence, it is not feasible to continue the simulation past a displacement value
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Table 6.6: Material behaviour at peak axial loading.

Scenario Maximum Load, Pmax

dplate = 1.00 mm 7.97 kN

dplate = 2.00 mm 15.93 kN

dplate = 3.00 mm 23.90 kN

Figure 6.23: Load vs Deformation in the z-axis up to vertical displacement
uz = 4.14 mm for a node at the loaded surface.

Figure 6.24: Evolution of lateral displacement (y-axis displacement) showing
necking behaviour at Point B at the base of the quarter plate through the simula-
tion.
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of 4.14 mm. Furthermore, there is no detectable cracking in this simulation as

that is triggered automatically when a local integration point undergoes internal

cracking controlled by the internal cracking threshold Mcr as shown in Table 6.5.

6.3.5 Analysis of necking and strain localisation phenomena

Necking is a mode of tensile deformation where a strain localisation is observed at

relatively large deformations in a material volume [3]. Longer, slender members

undergo necking due to a large length-width or length-thickness ratio; this phe-

nomenon causes a significant reduction in the dimension of the thickness/width of

the member. This phenomenon is also observed during the simulation of this solid

plate model.

Figure 6.24 shows the onset of necking in the manner in which the lateral defor-

mation at Point B (y-axis displacement) evolves through the simulation. It is clear

that from a y-axis displacement of approximately 0.78 mm, the edge at the base

of the aforementioned quarter plate contracts at a noticeably higher rate than the

edge at the top of the modelled plate.

Figure 6.25: Deformation profile and strain localisation plot of the full solid plate
model as viewed in the yz-plane. On the left is the undeformed plate and on the
right, the deformed plate at uz,max = 4.14 mm.

Shown in Figure 6.25 is the profile of the full plate model. It is clearly observable

that the middle portion of the plate undergoes necking phenomena, which further

confirms the realisations of the data provided in Figure 6.24. It also coincides with
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the concept of necking in that at large deformations, and there is a noticeable

contraction in the ”width” dimension of the plate.

Notably, due to the universal x-axis fixity, the necking observed in the plate for

the different plate thickness/depth iteration 1.00 mm, 2.00 mm and 3.00 mm is

identical. The entire contractile strain is applied only to the y-axis dimension.

This essentially flattens the specimen, and thus the strains and stresses are iden-

tical regardless of depth/thickness. In [44], similar material behaviour is observed

for two-dimensional shell plates where necking is observed at relatively high dis-

placements.
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Discussions

7.1 Continuum damage mechanics framework

Continuum mechanics involves the derivation of valid fundamental formulations

that characterise the material behaviour of all continuous materials [29]. These

fundamental relations lead us to the constitutive formulae. As a result of the

principles of continuum mechanics, field quantities such as traction and stress are

represented by continuous functions within the space and the time in which they

are computed.

This is clearly an issue in the case of continuum damage mechanics, which com-

bines continuum theory and material damage theory and removes the ability of

any model using these mathematical approaches to accurately model material be-

haviour under fracture. Furthermore, the concepts of continuity in continuum

mechanics limit the scope of the proposed damage model to continuous materials;

the model may is not able to discretely and physically visualise and characterise

discontinuities in materials such as voids and cracks.

However, this proposed material model/implementation accounts for the fact that

discontinuities are not discretely modelled, rather are smeared. In this sense, if a

point in the material is damaged, then the damage is smeared onto neighbouring

materials as part of the mechanical behaviour of the material [4]. This also explains

a slight discrepancy in the plotting of the smoothed (smeared) damage variable

Msm vs the values of the local damage variableM during simulations. The damage

variable is effectively smoothed over the volume elements from a combination of

locally damaged material points within an element.

It must be mentioned that the damage variable is universally applied and can be

universally applied to all sorts of materials, ductile, brittle or otherwise. As this

study is geared towards assessing material damage and not fracture, the utilisation

of a damage variable is appropriate and works as intended.

87
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7.2 Constitutive damage coupling vs. finite ele-

ment damage coupling

Material damage is strongly coupled in the constitutive framework only, in that the

material stress is degraded as damage is evolved. Furthermore, the thermodynamic

concept of internal potential couples the damage residual (1 −M) as part of the

elastic stored energy Ψint(Cel,M) term (see Section 4.5 and Section 4.6); the

damage residual degrades the elastic modulus [25]. All this has the implication of

embedding the effects of the loss in overall elastic storage energy capacity and the

loss in load-carrying capacity.

In the finite element framework of SESKA, this damage residual is not included

in any of the weak forms as it is already accounted for in the computation of the

2nd Piola-Kirchhoff stress and its consistent algorithmic tangent operator.

7.3 Yield criteria and associated flow rule

With the von Mises yield criterion as chosen for this implementation, the onset of

plastic yielding is defined as when the J2 invariant of the material stress deviator

exceeds the critical value — the critical value is assumed to be a function containing

the yield strength and/or hardening parameter with isotropic and/or kinematic

hardening [45]. This implementation uses the Mandel stress tensor Σ, for which

the J2 invariant is defined in Section 4.7.1 as

J2 =
1

2
||dev(Σ)||2.

It is clear that the J2 invariant is independent of the hydrostatic pressure compo-

nent when constructing a stress tensor — this is also known as pressure-insensitive.

This has the clear drawback that the von Mises yield criterion cannot reasonably

simulate compression and tension in tandem, as for many a material, the tensile

and compressive yield strength tend to deviate from one another. Even as per

this implementation, this could’ve been remedied by adding a tensile/compressive

behaviour switch.

Furthermore, the von Mises yield function used in this model is also cohesion-

insensitive and thus does not facilitate for analysis of materials whose material

behaviour is highly cohesion-dependent such as soft rocks and soils. More suit-

able for such cases would be a yield function based around the Drucker-Prager
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yield concepts, which would require quite rigorous work to fit within the Newton-

Raphson parametric update scheme.

7.4 Newton-Raphson procedure

A potential disadvantage of the Newton-Raphson update scheme for the plastic

multiplier as outlined in Section 5.4.3 is that the function tangent used in the

Newton-Raphson scheme, in this case the yield function tangent (∂f/∂λ) < 0, it

can never assume a null value as it would be mathematically impossible — the tan-

gent would be horizontal and thus would not cross the solution space (Figure 5.2)

for the plastic multiplier λ and the procedure would be unable to estimate λ.

Furthermore, it is physically impossible for (∂f/∂λ) = 0 as it follows that for as

long as the loading is applied in the inelastic regime, then the inelastic phenomena

must also continue to evolve. Moreover, (∂f/∂λ) ≯ 0 as changing signs would

lead to a larger than usual residual for the function in the estimation procedure.

However, in the physical and phenomenological sense, (∂f/∂λ) > 0 would imply

that there is a reversal of the flow of plastic potential, and thus reversing the flow

of entropy which is physically impossible.

Despite these limitations, the proposed material damage model makes several con-

cessions to counteract this effect. Firstly, the yield function tangent is restricted:

(∂f/∂λ) < 0. Furthermore, the yield function is allowed to approach zero to refine

the simulation and retain reasonable convergence requirements: (∂f/∂λ) → 0 for

lower and finer time and loading increments, as such an instance allows for finer

resolution of the estimation procedure as well.

7.5 Predictive capability of this model

Predictably, the mid-height of a long, thin specimen is typically the weak zone in

both uniaxial tension and compression. In compression, the weakness is observable

in that it causes buckling, which is the lateral concentrated outward straining of the

middle portion of a member. This is usually observed in constrained compression

scenarios. In a state of tension, the member may exhibit a concentration of strain

near or at mid-height of the member, and in particular on near the edges at the

mid-height, which causes a contraction of the width dimension of the member and

this is known as necking.
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In 3-point bending, the development of a plastic-damage hinge in the middle por-

tion of the specimen follows from the development and localisation of stress in

the middle part of the bending specimens — the mid-length of the member. Fur-

thermore, in cantilever beam bending, it is possible to view the plastic-damage

hinge developed near the fixed support of the beam as in Section 6.1 under large

deformations. The model accurately represents these zones as the weak/damaged

zones and does not necessarily follow the strain localisation but follows the stress

localisation. Qualitatively, this is accurate and all these predictions are within the

predictive capability of this model.

7.6 Effect of the damage energetic strength pa-

rameter

Predictably, the material damage model shows that the damage variable is higher

in materials with lower values of the damage strength parameter (i.e. weaker

ductile materials). Thus, the damage strength parameter S0, which is simply

an arbitrary albeit consistent material property that characterises the propensity

of a material to undergo damage softening, should have a different value in this

implementation compared to that in [44]. This is clear by assessing the results in

[2] as well.

The comparison of the effect of damage strength is further extended to this ob-

servation of the differing values of the damage variable for each of the damage

strength situations considered as per the initial problem description and material

properties. In general, similar bar/beam bending examples showcased in other

non-local damage examples, albeit with different material properties and a differ-

ent implementation of damage evolution, show a sharp concentration of damage

at the bar’s mid-span [31].



Chapter 8

Future work and study

8.1 Drucker-Prager yield criterion

Ducker and Prager [6] proposed their yield criterion, the Drucker-Prager yield

criterion as a smooth approximation case for the classical Mohr-Coulomb yield

law. The Mohr-Coulomb yield law is commonly used in geotechnical and concrete

engineering, as well as in geology to describe the stresses in soft materials [5]. Softer

materials tend to be highly pressure-sensitive, as well as including the material

property of cohesion strength.

The Drucker-Prager improves on the smoothness of Mohr-Coulomb yield law, and

states that ”plastic yielding commences once the J2 invariant of the stress deviator

and the hydrostatic portion of the stress tensor exceeds the cohesion strength”.

This is in contrast to the von Mises yield criterion, where yielding is controlled

by the yield strength and strain/work hardening. This is possible to implement

in SESKA, in particular when assessing brittle damage and is a good basis for

future work and study where our material damage model may include the Drucker-

Prager yield criteria. Fundamental thermodynamics concepts such as the principle

of maximum plastic dissipation are unlikely to change. However, the evolution of

plasticity may change accordingly.

8.2 Implementation of meso-scole void-closure ef-

fects

The implementation described in this paper proceeds by way of discretising local

points, otherwise known as Gauss integration points. These points are defined in

the reference and intermediate configurations of the material under deformation

— in this paper, this is referred to as either mesoscale damage, local damage or

internal local damage. Conceptually, for each local point in compression, it may

close cracks rather than open other cracks near the particular local point [24] —

this is known as the void-closure effect. In compression, each material point is

pushed closer to another material point, and the work done in doing this is what

manifests as compressive stress in the material.
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So as for further study, the closure effect can be implemented into this existing

model by splitting the stress tensor into exclusively tensile and compressive por-

tions in order to apply the closure effect to only the compressive portion of the

material stress. This would also achieve the goal of normalising the pressure-

insensitivity and stress-regime independence of the von Mises yield criterion.

8.3 Implementation of viscoplastic damage

Viscoplasticity, by definition, describes the plastic behaviour of solids but is en-

tirely dependent on the rate of deformation. This would easily include a mechani-

cal description of damage for brittle materials. Brittle and quasi-brittle materials

tend to exhibit rate-dependent material behaviour, and viscoplasticity is inher-

ently rate-dependent. This would easily fit in the current constitutive framework

for stress, strain and phenomenologically inelastic variables such as damage and

hardening. Furthermore, the associative flow rule would be the same. However,

the evolution of plasticity in the plastic multiplier would be markedly different.

An initial investigation into the feasibility of such an implementation produced the

following: the plastic strain-rate tensor Lpl is redefined as the viscoplastic strain-

rate tensor Lvp. All other continuum mechanics quantities remain the same. Algo-

rithmically, the plastic multiplier would be computed using Perzyna’s viscoplastic

laws as described and rigorously derived in [34], [36], and [37]. The preliminary

study of Perzyna’s viscoplasticity laws in conjunction with the constitutive frame-

work of the model described throughout this paper proposes the following equation

for the plastic increment:

∆λ =
∆t

ω

(
||dev(Σn+1)||
σy(Zn+1)

)N

(8.1)

whereby the parameter N is the rate sensitivity parameter, and the parameter ω

is directly related to the viscosity of the material. The time increment δt is crucial

in the algorithmic implementation of viscoplasticity, whilst it is trivial and only

used to store computational variables with the implementation of rate-dependent

plasticity and damage as described in this thesis paper. Further study is needed

to consolidate this preliminary knowledge and further work is required to fully

implement the concept of viscoplasticity and thus brittle damage into SESKA

using some of the damage concepts in this study.
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Appendix

A Expansion of finite element related quantities

into index notation

These hold for each simulation step n+ 1:

A.1 Weak form of the momentum balance

The weak form is provided as

pweak
0 =

∫
B0

FS : Grad(δu) dV −
∫
B0

b0 · δu dV −
∫
∂B0(N)

t0 · δu dA = 0, (.2)

thus, in index notation this is

pweak
0(ij) =

∫
B0

FkiSijδuk,j dV −
∫
B0

b0(e)δui dV −
∫
∂B0(N)

t0(e)δui dA = 0 (.3)

A.2 Approximation of the displacement-related fields

The numerical approximations of the displacement field, its increment, its varia-

tional form and their spatial derivatives are provided in Eq. (5.10), Eq. (5.11) and

Eq. (5.12). The index forms are:

uh(i) =
Ne∑
I=1

N IuI
i (.4)

δuh(i) =
Ne∑
I=1

N IδuI
i (.5)

∆uh(i) =
Ne∑
I=1

N I∆uI
i (.6)

uh(i,j) =
Ne∑
I=1

N I

XI

uI
i (.7)
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δuh(i,j) =
Ne∑
I=1

N I

XI

δuI
i (.8)

∆uh(i,j) =
Ne∑
I=1

N I

XI

∆uI
i (.9)

A.3 Index form of linearised quantities

As a consequence of linearising the weak form to define the incremental/iterative

solution scheme for the displacement field, K, fext and fint are produced. We

express these in index notation as

Kij =

∫
B0(e)

DijklFsk
NJ

Xl

Fri
N I

Xj

dV +

∫
B0(e)

Sij
NJ

Xi

N I

Xj

dV, (.10)

fext(i) =

∫
B0(e)

b0(i)NI dV +

∫
∂B0(e)

t0(i) ·NI dA, (.11)

and

fint(i) =

∫
B0(e)

FriSij
N I

Xj

dV. (.12)
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B Expansion of return-mapping quantities into

index notation

These hold for each simulation step n+ 1:

B.1 Algorithmic tangent operator

The full algorithmic form of the consistent tangent operator for this material dam-

age model is:

∂Sij

∂Crs

= −C−1
ir C−1

sk (Σ
trial
jk − 2G(1−M)n+1∆tλj+1Nkj)

+ (1−M)n+1C
−1
ik

((
K − 1

3
G

)
δkjC

−1
rs + GδksC

−1
rj

)

− 2G(1−M)2n+1∆t
Ned(

2G∆t
(1−M)n+1

+
2G∆tλj+1

(
∂Mn+1

∂λ

)
(1−M)2n+1

−
√

2
3
∂Rn+1

∂λ

)
((

K − 1

3
G

)
δdeC

−1
rs + GδdsC

−1
re

)
C−1

ik Nkj −

2G(1−M)3n+1∆tλj+1

||dev(Σtrial
de )||

C−1
ik

(
δkdδje −

1

3
δkjδde −NkjNed

)((
K − 1

3
G

)
δdeC

−1
rs + GδdsC

−1
re

)
.

B.2 Stress computation

The algorithmic form of the Mandel stress update is:

Σtrial
ij = (1−M)n+1 [K tr(αij) +G dev(αij)]

Σij = Σtrial
ij − 2G (1−M)n+1∆tλj+1Nji.

When combined with the computational formulation of the Mandel stress tensor

in Eq. (5.54), it is inevitable that the update of the 2nd Piola-Kirchhoff stress

tensor is

Sim = C−1
ij Σjm.
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B.3 Flow vector

The flow vector that is as a result of the maximum plastic dissipation principle

and the associative flow rule is

Nab =
dev(Σtrial

ab )

(1−M)n+1||dev(Σtrial
ab )||

.

B.4 Strain measures

The right Cauchy-Green tensor C and the distorted Hencky strain tensor α as

used per this model are algorithmically implemented as

(
C−1

pl

)
ij
=

(
∆F−1

pl

)
ik

(
C−1

pl

)
kl

(
∆F−1

pl

)
jl

αtrial
mi = ln

(
Cij

(
C−1

pl

)
jm

)
.

B.5 Strain-rate measures

The plastic strain-rate tensor Lpl was implemented algorithmically as

(Lij)pl = ∆tλj+1Nji.
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