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A B S T R A C T

Physical systems exhibiting symmetry properties may be conveniently studied using the mathematics of group
theory. In structural mechanics, group theory has been successfully employed to simplify problems of the
bifurcation, stability, statics, kinematics and vibration of symmetric configurations of space frames, space truss
domes, double-layer and triple-layer space grids, plates and cable-net systems. Besides significantly reducing
computational effort, group theory affords deeper insights on structural behaviour, and a better understanding of
complex structural phenomena. The key to group-theoretic simplification is the decomposition of the space of the
problem into independent subspaces that are spanned by symmetry-adapted variables obtained by applying
idempotents of the symmetry group on the normal variables of the problem. However, for degenerate subspaces
of a symmetry group (i.e. subspaces associated with repeating solutions), the associated idempotents do not
sufficiently decompose the problem. The aim of this paper is to present, for the C3v symmetry group describing
the symmetry of a regular 3-sided polygon, a pair of algebraic operators that fully decompose such subspaces.
Compared with existing group-theoretic formulations, these operators offer an alternative approach that is
simpler and more suited to practical engineering computations, and that affords clearer insights on the physical
characteristics of the structural system (such as type of symmetries within the degenerate subspaces). The val-
idity of the operators is confirmed through comparisons with results of eigenvalue vibration and stability
problems drawn from the literature.

1. Introduction

Symmetry is very common in structural engineering and architec-
ture. Besides its aesthetic appeal, symmetry can enhance the function-
ality of space. From a structural point of view, symmetry can be taken
advantage of to simplify the analysis of the system, or to reduce the costs
of assembly of the system. However, symmetry also attracts complica-
tions in structural behaviour, such as the occurrence of multiple critical
points in bifurcation analysis (where two or more eigenvalues vanish
simultaneously), and the coincidence or near-coincidence of eigenvalues
in problems of the vibration or buckling of structures, both of which pose
difficulties of numerical ill-conditioning of solution procedures in
computational schemes [1,2]. Suitable tools are needed to facilitate the
study of structural configurations with higher-order symmetries, and
better understand the associated complex phenomena.

The set of symmetry elements describing the symmetry of a physical
configuration constitutes a symmetry group. Group theory provides the
mathematical tools for the study of such systems [3–5]. This allows the

space of the problem to be decomposed into independent
symmetry-adapted subspaces. Within the domain of structural me-
chanics, group theory has been successfully employed to simplify the
study of the bifurcation of space trusses [1,6,7], the statics of space
frames [8,9] and pin-jointed trusses [10], the vibration of cable nets [11,
12], layered space grids [13] and plates [14], the kinematics of skeletal
structures [15–17], and the stability of frames [18–20] and origami
[21]. Applications in computational structural mechanics were high-
lighted in a survey that was conducted fifteen years ago [22]. Interesting
applications of group theory to the study of auxetic metamaterials have
also been reported in more recent literature [23], while related sym-
metry considerations have been applied to the study of foldable conical
origami structures with potential for use as energy absorption structures
[24].

Besides significantly reducing computational effort, group theory
affords deeper insights on structural behaviour, and a better under-
standing of complex structural phenomena (for instance, it explains why
certain natural frequencies repeat in symmetric vibrating systems [11,
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13,25–27]). The key to group-theoretic simplification is the decompo-
sition of the space of the symmetric problem into independent subspaces
that are spanned by symmetry-adapted variables, allowing the problem
to be broken down into smaller independent problems that are easier to
study, or easier to analyse. By separating the computation of coincident
eigenvalues into independent subspaces that “do not see each other”,
group theory also circumvents the numerical problems associated with
computing closely-spaced or coincident solutions in the full space of the
problem [1,2]. Group theory effectively untangles the symmetries.

According to the representation theory of symmetry groups [3,4],
each independent symmetry-adapted subspace S is associated with an
irreducible representation Γ of the symmetry group; if the symmetry
group has k irreducible representations, then the number of independent
symmetry-adapted subspaces will be k. In turn, each irreducible repre-
sentation Γ(i) (i = 1, 2, …,k) of the symmetry group is associated with a
unique idempotent P(i) (i = 1, 2, …, k), which is a very specific linear
combination of the symmetry elements of the group, having the special
property of nullifying all vectors that do not belong to the subspace S(i)

of the irreducible representation Γ(i), and selecting only vectors that
belong to the subspace S(i). Idempotents of any symmetry group satisfy
the relation P(i)P(i) = P(i) for all i. More importantly, they have the
property P(i)P(j) = 0 if i ∕= j (i.e. idempotents of different subspaces are
orthogonal to each other).

Each subspace has its own characteristic symmetry properties which
distinguish it from other subspaces [25]. As an example, the symmetry
group C1v describing the symmetry of configurations with one reflection
plane (such as a simply supported beam with two equal point loads P
equidistant from the centre of the beam) has two irreducible represen-
tations Γ(1) and Γ(2) with corresponding idempotents P(1) = 0.5(e+σv)

and P(2) = 0.5(e − σv), the symmetry elements {e, σv} denoting the
identity operation and reflection operation respectively. The idempotent
P(1) and P(2), by operating on the normal variables of the problem, split
the space of the problem into a symmetric subspace S(1) and an anti-
symmetric subspace S(2) respectively.

Taking the idempotent P(i) corresponding to the irreducible repre-
sentation Γ(i) (and associated with the subspace S(i)), and applying this to
each of the n normal variables of the problem, we obtain n symmetry-
adapted variables, of which say ri are independent. The ri independent

symmetry-adapted variables may be taken as the basis vectors of sub-
space S(i). Thus, subspace S(i) is of dimension ri, where ri≪n; the sum of
the dimensions of all k subspaces is equal to n: that is,
r1 +r2 +…+ rk = n [11,13,25,28].

For any 1-dimensional irreducible representation Γ(i) of a symmetry
group (the dimension of Γ(i) is given by the first character of Γ(i) in the
character table [3–5] of the group), the dimension ri of the associated
subspace S(i) is the smallest possible (i.e. no further decomposition of
subspace S(i) is possible). However, for an m-dimensional irreducible
representation (where m can be 2, 3, 4 or 5), the decomposition yielded
by the application of idempotent P(i) results in a subspace S(i) that can
still be decomposed further. Such degenerate subspaces are associated
with repeating solutions (which, in the case of eigenvalue vibration
problems, are repeating natural frequencies); the degree of repetition is
equal to m. Irreducible representations of dimension 1 or 2 are typically
associated with structural configurations belonging to cyclic (C) and
dihedral (D) symmetry groups, whereas those of dimension greater than
2 are only encountered in the analysis of tetrahedral (T), octahedral (O)
and icosahedral (I) configurations. It should be pointed out that in this
contribution, we will only be concerned with structural configurations
that have a fixed centre of symmetry (of which there are many such
examples in structural engineering), so only point groups will be rele-
vant. Translational symmetry will not be taken into account, and space
groups are outside the scope of this study.

Fig. 1 shows double-layer grids (in plan and elevation) belonging to
symmetry groups C3v and C6v, which characterise configurations with
the symmetries of a regular (or equilateral) triangle (3 rotations and 3
reflections) and a regular hexagon (6 rotations and 6 reflections). The
grid in Fig. 1(a) has 3 supported nodes and 13 unsupported nodes, while
that in Fig. 1(b) has 6 supported nodes and 37 unsupported nodes; the
unsupported nodes of each grid are numbered as shown.

By reference to standard texts on application of group theory to
physical problems with symmetry (see, for example, Ref. [3]), one may
note that the character table of symmetry group C3v features three
irreducible representations Γ(1), Γ(2) and Γ(3), the first two of which are
1-dimensional while Γ(3) is 2-dimensional. On the other hand, the
character table of symmetry group C6v features six irreducible repre-
sentations: Γ(1) to Γ(4)) are 1-dimensional, while Γ(5) and Γ(6) are
2-dimensional.

Fig. 1. Space grids with Cnv symmetry: (a) triangular grid (C3v symmetry); (b) hexagonal grid (C6v symmetry) [13].
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From the above information, we deduce that problems involving the
symmetry group C3v will have two normal subspaces S(1) and S(2) cor-
responding to the 1-dimensional irreducible representations Γ(1) and Γ(2)

of the symmetry group, and one degenerate subspace S(3) corresponding
to the 2-dimensional irreducible representation Γ(3) of the symmetry
group. Similarly, problems involving the symmetry group C6v will have
four normal subspaces S(1) to S(4) corresponding to the 1-dimensional
irreducible representations Γ(1) to Γ(4) of the symmetry group, and two
degenerate subspaces S(5) and S(6) corresponding to the 2-dimensional
irreducible representations Γ(5) and Γ(6) of the symmetry group. In the
present context, and as already pointed out, a degenerate subspace is
one which is associated with solutions that repeat twice or more times,
instead of being distinct from each other.

Clearly, if further decomposition of a degenerate subspace can be
achieved, this would allow the doubly-repeating (or multiply-repeating)
solutions of the subspace to be computed within separate smaller sub-
spaces, not only circumventing the numerical difficulties of computing
coincident solutions, but also reducing computational effort by reducing
the size of the problem. Simple operators that further decompose the
degenerate subspace S(5) of problems belonging to the symmetry group
C4v (which describes the symmetry of square configurations) were first
introduced by the first author in a study of the vibration modes of
symmetric layered space grids [13], and subsequently applied to the
eigenvalue analysis of plates [14], plane grids [28] and plane frames
[20], allowing the doubly-repeating eigenvalues of subspace S(5) to be
obtained by consideration of only one of its semi-subspaces S(5,1) and
S(5,2).

As far as the authors are aware of, operators that further decompose
the degenerate subspaces of symmetry groups C3v and C6v, in terms of
the symmetry elements of the group, have never been reported in the
literature in a simple algebraic form that is easily applicable by struc-
tural engineers. General strategies for the splitting of a degenerate
subspace S(i) may be seen in early texts on applications of group theory
in physics and physical chemistry (see, for example, McWeeny [29]),
and in other work that appeared later (Healey & Treacy [30]), but these
required matrices of the irreducible representations to be written down
first, and did not distinguish the symmetry types of the ensuing sub-
spaces in a manner that has a clear engineering interpretation.

In this paper, we will present a simple pair of operators for the
automatic decomposition of the degenerate subspace of problems
belonging to the symmetry group C3v. The difference with existing ap-
proaches (as presented in early literature) is that the operators that will
be presented in this paper are simple algebraic linear combinations of
the symmetry elements of the group; they do not involve matrices of
irreducible representations, and are therefore very convenient to use in
the course of practical engineering computations. While less general in
the sense of being applicable only to a particular symmetry group, the
proposed operators are readily applicable to the study and analysis of
any structural problem that has C3v symmetry, of which there are many
in the form of cable-net systems, layered space grids, truss domes, lattice
shells, plane frames and plane grids.

We will illustrate their application by reference to the small trans-
verse vibrations of the double-layer space grid in Fig. 1(a). Vibration
modes of this space grid were studied in earlier work [13], but without
the benefit of the new operators. It should be noted that the usefulness of
these operators extends beyond structural mechanics, as they can also be
used to simplify problems in material science, physics and chemistry, as
long as the problems have C3v symmetry. The operators will be validated
by consideration of the vibration analysis of a spring-mass system and
the buckling analysis of a plane triangular frame. Results for eigenvalues
and mode shapes obtained using the new operators will be compared
with those previously obtained without the use of the operators.

It should be pointed out from the outset that the objective of this
particular work is not so much to provide an improved computational

procedure, but rather, to provide a mathematical formulation that al-
lows structural engineers to better understand the physical behaviour of
structural systems with C3v symmetry, whether this behaviour is vibra-
tion, buckling or kinematics. Thus, the primary aim is to reveal the types
of symmetries that occur in the degenerate subspace of systems
belonging to the symmetry group C3v, and to show how modes of equal
frequency within the degenerate subspace can be separated from each
other by use of simple algebraic operators, in that way simplifying the
actual computation of repeating frequencies (if needed). We are not
concerned with assessing the computational performance of the group-
theoretic formulation in comparison with well-established numerical
procedures such as the finite element method (FEM). Numerical
methods such as FEM are suitable for numerical computations, but they
do not afford the same type of insights and the deeper understanding of
physical phenomena that the mathematics of group theory affords in
studying problems with symmetry.

For instance, in analysing a symmetric space grid or a symmetric
cable-net system for natural frequencies of vibration, FEM will give all
sought values for natural frequencies, some of which are observed to
occur in identical pairs, but FEM will not explain why this phenomenon
of repeating frequencies occurs. On the other hand, and as will be
illustrated in this paper, by decomposing the vector space of the problem
into symmetry-adapted subspaces, group theory allows us to predict the
occurrence of such doubly-repeating frequencies before we even perform any
detailed calculations. These are the type of insights being referred to here.
Such insights on physical phenomena have been described in detail in
previous work of the first author [13,25,27]. That is why group theory
has been used so fruitfully by physicists and physical chemists in
studying phenomena in quantum mechanics, molecular vibrations,
crystallography and other topics [31–33]. Similar benefits can be gained
in the context of structural mechanics.

2. Idempotents of symmetry group C3v

Symmetry operations are transformations which bring an object into
coincidence with itself, and leaves it indistinguishable from its original
configuration. In the double-layer grid shown in Fig. 1, nodes 1 to 7 are
in the bottom layer, while nodes 8 to 13 are in the top layer, vertically
above the centroids of the bottom triangles. The centre of symmetry is at
node 4, through which the vertical axis of rotational symmetry of the
configuration passes.

By reference to the upper diagram of Fig. 1(a), the symmetry oper-
ations of group C3v, describing the symmetry of a regular 3-sided poly-
gon, are

{
e, C3, C− 1

3 , σ1, σ2, σ3
}
, where e is the identity element

(equivalent to a rotation of 2π about the axis of rotational symmetry), C3

and C− 1
3 are clockwise and anticlockwise rotations of 2π/3 about the axis

of rotational symmetry, while σ1, σ2 and σ3 are reflections in vertical
planes 1 − 1, 2 − 2 and 3 − 3 as shown.

Table 1 gives the group table for symmetry group C3v. For a given
symmetry group with elements {α, β, γ, …}, the group table comprises
products αβ, generated by multiplying a symmetry element α from the
left of the table by a symmetry element β from the top of the table (in
that order). For example, C− 1

3 σ2 (i.e. an anticlockwise rotation of 2π/3
followed by a reflection in the axis 2 − 2) is equivalent to the symmetry

Table 1
Group table for symmetry group C3v.

C3v e C3 C− 1
3

σ1 σ2 σ3

e e C3 C− 1
3

σ1 σ2 σ3
C3 C3 C− 1

3 e σ2 σ3 σ1
C− 1
3 C− 1

3 e C3 σ3 σ1 σ2
σ1 σ1 σ3 σ2 e C− 1

3 C3

σ2 σ2 σ1 σ3 C3 e C− 1
3

σ3 σ3 σ2 σ1 C− 1
3 C3 e
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operation σ1 (a reflection in the axis 1 − 1). The group table is very
useful in writing down the product of any two symmetry elements of the
group.

In general, the orthogonal idempotents of a symmetry group G can be
written down directly from the character table of the group, using the
relation [3–5]:

P(i) =
hi
h
∑

σ
χi
(
σ− 1)σ (1)

where P(i) corresponds to Γ(i) (the ith irreducible representation of the
symmetry group G), hi is the dimension of Γ(i) (given by hi = χi(e), the
first character of the ith row of the character table), h is the order of the
symmetry group (that is, the number of elements of G), χi is a character
of Γ(i), σ is an element of G, and σ− 1 its inverse. If Γ(i) is a 1-dimensional
representation of G, then hi = 1; if Γ(i) is a 2-dimensional representation
of G, then hi = 2, and so forth.

Each idempotent P(i), when applied to the variables of a problem,
generates the symmetry-adapted variables of the corresponding sub-
space S(i) of the problem. Degenerate subspaces (i.e. those which have
the potential for further decomposition) stem from irreducible repre-
sentations of dimension 2 or greater (i.e. the Γ(i) for which hi ≥ 2). Eq.
(1) only yields one idempotent P(i) for the degenerate subspace S(i),
which can be used to generate the symmetry-adapted variables for
subspace S(i). If further decomposition of a degenerate subspace is
required (which is the objective of the present work), then additional
operators for that purpose need to be sought.

The three idempotents of symmetry group C3v may easily be written
down from the character table of the symmetry group. The results are [4,
5,13,25,26]:

P(1) =
1
6
(
e+C3 +C− 1

3 + σ1 + σ2 + σ3
)

(2)

P(2) =
1
6
(
e+C3 +C− 1

3 − σ1 − σ2 − σ3
)

(3)

P(3) =
1
3
(
2e − C3 − C− 1

3

)
(4)

With the aid of the group table, it may easily be seen that P(i)P(i) = P(i)

for i = {1, 2, 3}. Furthermore, the orthogonality property also holds, i.
e. P(i)P(j) = 0 if i ∕= j.

3. Basis vectors of the triangular space grid

Let us assume the triangular double-layer grid in Fig. 1(a) experi-
ences small transverse motions as it undergoes free vibration. In a pre-
vious study [13], group theory was applied to the free vibration of the
grids in Fig. 1, but without decomposition of their degenerate subspaces.
Here, and considering only the triangular grid, we will summarise the
key results of that study, to highlight the need for a further decompo-
sition of subspace S(3), and to serve as a starting point from which the
decomposition of subspace S(3) will proceed. It is important to know
what subspace S(3) looks like before decomposition, in order to appre-
ciate the benefit of the decomposition that will follow.

The inertia of the grid is modelled as concentrated masses {m1, m2 ,

…, m13} at the unsupported nodes {1, 2, …, 13} of the grid, with the
vertical displacements of these masses being {v1, v2 , …, v13} respec-
tively. The vibrating system therefore has n = 13 degrees of freedom
{v1, v2 , …, v13}. A conventional lumped-parameter vibration analysis
of this system would lead to a 13× 13 determinant, the vanishing
condition of which results in a 13th-degree characteristic polynomial
equation. Solution of the characteristic equation yields 13 eigenvalues
(hence natural frequencies of the system), allowing the 13 modes of
vibration to be determined. Although this is a relatively small problem, a

considerable amount of effort is still required to evaluate the dynamic
characteristics of the system (frequencies and modes of vibration).

On the other hand, group theory decomposes the 13× 13 system
matrix into a number of r × r independent matrices (r≪n), which can be
separately solved for all eigenvalues. This separation is achieved by
applying idempotents P(1), P(2) and P(3), in turn, upon each of the 13
degrees of freedoms of the system, thus creating three independent
subspaces S(1), S(2) and S(3) of the problem. When the first idempotent
P(1) is applied (as an operator) upon {v1, v2 , …, v13}, we obtain 13
symmetry-adapted freedoms, but not all of them are independent. We may
select a set of r1 independent symmetry-adapted freedoms as the basis
vectors Φ(1)

i (i = 1, 2, …, r1) of subspace S(1). Repeating the process
using idempotents P(2) and P(3) generates the r2 basis vectors of sub-
spaces S(2) and the r3 basis vectors of subspace S(3), respectively. Details
may be seen in the already-mentioned previous study [13]. The results
are as follows:

Subspace S(1)

Φ(1)
1 = v1 + v2 + v3 + v5 + v6 + v7 (5)

Φ(1)
2 = v4 (6)

Φ(1)
3 = v8 + v11 + v13 (7)

Φ(1)
4 = v9 + v10 + v12 (8)

Subspace S(2)

Φ(2)
1 = v1 − v2 − v3 + v5 + v6 − v7 (9)

Subspace S(3)

Φ(3)
1 = 2v1 − v5 − v6 (10)

Φ(3)
2 = 2v5 − v1 − v6 (11)

Φ(3)
3 = 2v2 − v3 − v7 (12)

Φ(3)
4 = 2v3 − v2 − v7 (13)

Φ(3)
5 = 2v8 − v11 − v13 (14)

Φ(3)
6 = 2v11 − v8 − v13 (15)

Φ(3)
7 = 2v9 − v10 − v12 (16)

Φ(3)
8 = 2v10 − v9 − v12 (17)

Clearly, subspaces S(1), S(2) and S(3) are 4-dimensional (r1 = 4), 1-
dimensional (r2 = 1) and 8-dimensional (r3 = 8) respectively. Thus,
these subspaces will have 4, 1 and 8 modes of vibration respectively.
Instead of solving a conventional 13× 13 matrix system of unknowns,
the above group-theoretic decomposition requires us to solve, inde-
pendently of each other, three smaller matrix systems of dimensions 4×
4, 1× 1 and 8× 8 respectively, which simplifies the problem. However,
if the 8× 8 matrix system of subspace S(3) (associated with doubly
repeating solutions) can be decomposed further into two 4× 4 sub-
systems that are identical, that would reduce the overall computations
even further. It would mean that only three matrix systems of di-
mensions {4× 4; 1× 1; 4× 4} would need to be tackled in order to
generate all 13 eigenvalues of the original problem, noting that the two
4× 4 sub-matrices of subspace S(3) would be identical (therefore only
one would need to be considered). This promises a significant further
reduction in computational effort, and provides strong motivation for
seeking a further decomposition of subspace S(3).

If the basis vectors of each subspace are plotted as shown in Fig. 2,

A. Zingoni and C. Kaluba
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Fig. 2. Basis-vector plots of the subspaces of the triangular space grid: (a) subspace S(1); (b) subspace S(2); (c) subspace S(3) [13].

A. Zingoni and C. Kaluba



Engineering Structures 317 (2024) 118661

6

the symmetries of the subspaces become more evident. The plotted
values are the coefficients of the v terms in Eqs. (5–17). Black dots
denote positive coefficients of v (downward displacement of the node),
while red dots denote negative coefficients of v (upward displacement of
the node), the diameter of the dot being proportional to the coefficient.
The four modes of subspace S(1) have the full C3v symmetry of the
triangular grid, while the one mode of subspace S(2) is antisymmetric
about all three axes (1 − 1, 2 − 2 and 3 − 3). On the other hand, sub-
space S(3) has a mix of symmetries (four modes have one axis of
reflection, while the other four appear to have no symmetry properties).

In summary, we have noted that the irreducible representation
associated with subspace S(3) is a 2-dimensional representation of the
symmetry group C3v [3,4,12,21]. This implies that the eigenvalues in
this subspace will be doubly repeating. Thus, for the case of the trian-
gular grid that we have studied, this subspace will be expected to have
only four distinct eigenvalues. However, unless a way can be found of
decomposing subspace S(3) further, an 8-dimensional eigenvalue prob-
lem (leading to an 8th-degree characteristic equation) will still need to
be solved in order to arrive at the four doubly repeating solutions. This
requires considerable computational effort. In the next section, a special
pair of operators is proposed for the further decomposition of subspace
S(3), to reduce computational effort.

4. Special operators for subspace S(3) of symmetry group C3v

For problems involving symmetry group C3v, we seek two operators
P(3,1) and P(3,2) that are able to subdivide the degenerate subspace S(3)

into two smaller subspaces S(3,1) and S(3,2) spanned by linear combina-
tions of the basis vectors of subspace S(3), such that the basis vectors of
subspace S(3,1) are orthogonal to those of subspace S(3,2). This would then
allow subspaces S(3,1) and S(3,2) to be treated separately. We require
these operators to satisfy the following four conditions:

P(3,1) +P(3,2) = P(3) (18)

P(3,1)P(3,1) = P(3,1) (19)

P(3,2)P(3,2) = P(3,2) (20)

P(3,1)P(3,2) = 0 (21)

The first condition is the requirement that the sum of the two special
operators must equal the idempotent P(3) as given by Eq. (4). The second
and third conditions require the two special operators to have the
property P(i)P(i) = P(i) common to all idempotents. The last condition
requires the two special operators to be orthogonal to each other, to
ensure the orthogonality of the basis-vector sets of subspaces S(3,1) and
S(3,2).

To preserve the rotational symmetries of the parent idempotent P(3)

(see Eq. (4)), let each of the sought operators P(3,1) and P(3,2) comprise
half of P(3) and a linear combination of reflection elements {σ1, σ2, σ3}

that is of equal magnitude but of opposite sign (i.e. the linear combi-
nation of {σ1, σ2, σ3} in P(3,1) must be the negative of that in P(3,2) so
that the sum of the two linear combinations is zero). Such a pair of
operators would automatically satisfy Eq. (18). The following expres-
sions for P(3,1) and P(3,2) satisfy this requirement (hence also Eq. (18)):

P(3,1) =
1
6
(
2e − C3 − C− 1

3 − σ1 − σ2 +2σ3
)

(22)

P(3,2) =
1
6
(
2e − C3 − C− 1

3 + σ1 + σ2 − 2σ3
)

(23)

Let us start by checking if P(3,1) and P(3,2) are orthogonal to each other
(i.e. if condition (21) is satisfied). Using the above expressions for P(3,1)

and P(3,2), we may write:-

P(3,1)P(3,2) =
1
36

(
2e − C3 − C− 1

3 − σ1 − σ2 + 2σ3
)(
2e − C3 − C− 1

3 + σ1

+ σ2 − 2σ3
)

=
1
36

M

(24)

where

M =
(
2e − C3 − C− 1

3 − σ1 − σ2 +2σ3
)(
2e − C3 − C− 1

3 + σ1 + σ2 − 2σ3
)

(25)

The right-hand side of Eq. (25), evaluated with the aid of the group
table for symmetry group C3v (Table 1), yields the following result,
where line (i = 1, 2, …, 6) is generated by multiplying term i of the first
brackets by all terms of the second brackets:

4e − 2C3 − 2C− 1
3 +2σ1 +2σ2 − 4σ3 (i)

− 2C3 +C− 1
3 + e − σ2 − σ3 +2σ1 (ii)

− 2C− 1
3 + e+C3 − σ3 − σ1 +2σ2 (iii)

− 2σ1 + σ3 + σ2 − e − C− 1
3 +2C3 (iv)

− 2σ2 + σ1 + σ3 − C3 − e+ 2C− 1
3 (v)

4σ3 − 2σ2 − 2σ1 +2C− 1
3 +2C3 − 4e (vi)

The sum of expressions (i) – (vi) is zero. Thus M is zero, proving the
orthogonality of P(3,1) and P(3,2). Similarly multiplying out P(3,1)P(3,1) and
P(3,2)P(3,2) with the aid of the group table, we find that the operators P(3,1)

and P(3,2) also satisfy Eqs. (19) and (20). Therefore relations (22) and
(23), proposed here for the first time, are the sought algebraic operators
for the further decomposition of subspace S(3). They have all the prop-
erties of idempotents, so they may be regarded as the idempotents of the
semi-subspaces S(3,1) and S(3,2).

Let us assume the parent subspace S(3) is of dimension r3 (this is al-
ways an even integer) before it is decomposed. When applied upon the
normal variables of a problem, operators P(3,1) and P(3,2) automatically
generate the r3/2 basis vectors of subspace S(3,1) and the r3/2 basis
vectors of subspace S(3,2), respectively, thus decomposing subspace S(3)

into two subspaces that are each half the size of subspace S(3).
It must be noted that the operators given by Eqs. (22) and (23) are very

general, being applicable to any problem that has C3v symmetry, whether
this is a group of atoms making up a molecule (in chemistry), a crystal
structure (in crystallography), a finite element (in computational engi-
neering mechanics), or a structural-engineering system (cable net, space
grid, plate, shell, plane frame, etc). In the next section, the two operators
will be applied to the further decomposition of subspace S(3) of the
triangular space grid of Fig. 1(a).

5. Application of operators to the triangular space grid

By reference to Fig. 1(a), and with rotations being about the vertical
axis through node 4 and reflections being in the vertical planes 1 − 1,
2 − 2 and 3 − 3 as shown, the freedom v1 is moved to freedoms {v1, v5,
v6, v2, v3, v7} by the symmetry operations

{
e, C3, C− 1

3 , σ1, σ2, σ3
}

respectively. Therefore, applying the operator P(3,1) (Eq. (22)) on v1, we
obtain

P(3,1)v1 =
1
6
(
2e − C3 − C− 1

3 − σ1 − σ2 +2σ3
)
v1

=
1
6
(2v1 − v5 − v6 − v2 − v3 +2v7) (26a)

Applying the operator P(3,1) on the rest of the freedoms (v2, v3, …,
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v13) of the triangular grid in a similar way, we obtain the following
results:

P(3,1)v2 =
1
6
(2v2 − v7 − v3 − v1 − v6 +2v5) (26b)

P(3,1)v3 =
1
6
(2v3 − v2 − v7 − v5 − v1 +2v6) = −

[
P(3,1)v1 +P(3,1)v2

]
(26c)

P(3,1)v4 = 0 (26d)

P(3,1)v5 =
1
6
(2v5 − v6 − v1 − v3 − v7 +2v2) = P(3,1)v2 (26e)

P(3,1)v6 =
1
6
(2v6 − v1 − v5 − v7 − v2 +2v3) = P(3,1)v3 (26 f)

P(3,1)v7 =
1
6
(2v7 − v3 − v2 − v6 − v5 +2v1) = P(3,1)v1 (26 g)

P(3,1)v8 =
1
6
(2v8 − v13 − v11 − v8 − v11 +2v13) =

1
6
(v8 + v13 − 2v11)

(26 h)

P(3,1)v9 =
1
6
(2v9 − v10 − v12 − v10 − v9 +2v12) =

1
6
(v9 + v12 − 2v10) (26i)

P(3,1)v10 =
1
6
(2v10 − v12 − v9 − v9 − v12 +2v10) =

2
6
(2v10 − v9 − v12)

= − 2P(3,1)v9
(26j)

P(3,1)v11 =
1
6
(2v11 − v8 − v13 − v13 − v8 +2v11) =

2
6
(2v11 − v8 − v13)

= − 2P(3,1)v8
(26k)

P(3,1)v12 =
1
6
(2v12 − v9 − v10 − v12 − v10 +2v9) =

1
6
(v9 + v12 − 2v10)

= −
1
2
P(3,1)v10

(26 l)

P(3,1)v13 =
1
6
(2v13 − v11 − v8 − v11 − v13 +2v8) =

1
6
(v8 + v13 − 2v11)

= P(3,1)v8
(26 m)

Of the 13 symmetry-adapted freedoms, i.e. P(3,1)vi (i = 1, 2, …, 13),
only four are independent. Choosing the symmetry-adapted freedoms in
Eqs. (26a), (26b), (26h) and (26i) as the independent ones, and dropping
the scalar multipliers in front of the brackets, the four basis vectors for
subspace S(3,1) (generated by operator P(3,1)) may be taken as follows:

Subspace S(3,1)

Φ(3,1)
1 = 2v1 − v5 − v6 − v2 − v3 +2v7 (27a)

Φ(3,1)
2 = 2v2 − v7 − v3 − v1 − v6 +2v5 (27b)

Φ(3,1)
3 = v8 + v13 − 2v11 (27c)

Φ(3,1)
4 = v9 + v12 − 2v10 (27d)

Similarly, applying the operator P(3,2) on the 13 freedoms of the grid
(v1, v2, v3, …, v13), we find that there are also only four independent
symmetry-adapted freedoms, allowing us to adopt the following as the
four basis vectors for subspace S(3,2) (generated by operator P(3,2)):

Subspace S(3,2)

Φ(3,2)
1 = 2v1 − v5 − v6 + v2 + v3 − 2v7 (28a)

Φ(3,2)
2 = 2v2 − v7 − v3 + v1 + v6 − 2v5 (28b)

Φ(3,2)
3 = v8 − v13 (28c)

Φ(3,2)
4 = v9 − v12 (28d)

The basis vectors of subspaces S(3,1) and S(3,2) are plotted in Fig. 3.
These subspaces have distinct symmetry properties, as is clearly evident
from the plots: all the basis-vector plots of subspace S(3,1) are symmetric
about the vertical plane 3 − 3, while all the basis-vector plots of sub-
space S(3,2) are antisymmetric about the vertical plane 3 − 3.We therefore
expect the vibration modes of subspaces S(3,1) and S(3,2) to exhibit similar
patterns of symmetry properties. Thus, apart from simplifying the
computation of actual frequencies and mode shapes of the parent sub-
space S(3), the operators P(3,1) and P(3,2) also untangle the symmetries of
the subspace, separating them into C1v-symmetric modes (i.e. modes
with one plane of symmetry) and C1-symmetric modes (i.e. modes with
one plane of antisymmetry).

For each mode in subspace S(3,1), there will be a corresponding mode
in subspace S(3,2) that has an identical natural frequency (explaining the
phenomenon of doubly-repeating frequencies associated with the parent
subspace S(3)). However, the basis-vector sets of subspace S(3,1) and
subspace S(3,2) are orthogonal to each other, i.e. Φ(3,1)

i Φ(3,2)
j = 0 for any

i = {1, 2, 3, 4} and any j = {1, 2, 3, 4}. For example, writing the co-
efficients of basis vectors Φ(3,1)

1 , Φ(3,2)
1 and Φ(3,2)

2 (see Eqs. (27a), (28a)
and (28b)) as B(3,1)

1 , B(3,2)
1 and B(3,2)

2 respectively, we obtain:-

{
B(3,1)
1

}T{
B(3,2)
1

}
=

{2 − 1 − 1 0 − 1 − 1 2 0 ⋯ }

{2 1 1 0 − 1 − 1 − 2 0 ⋯ }
T
= 0

{
B(3,1)
1

}T{
B(3,2)
2

}
=

{2 − 1 − 1 0 − 1 − 1 2 0 ⋯ }

{1 2 − 1 0 − 2 1 − 1 0 ⋯ }
T
= 0

showing that (i) Φ(3,1)
1 is orthogonal to Φ(3,2)

1 , (ii) Φ(3,1)
1 is orthogonal to

Φ(3,2)
2 , and so forth.
In summary, the new operators P(3,1) and P(3,2) have allowed us to

successfully decompose the 8-dimensional degenerate subspace of the
triangular space grid (i.e. subspace S(3)) into two 4-dimensional sub-
spaces S(3,1) and S(3,2) which will have identical sets of eigenvalues but
orthogonal sets of modes. This significantly reduces computational
effort, as only one of these two subspaces needs to be considered in
computations, to give all 8 solutions of subspace S(3).

6. Validation of operators

6.1. Vibration of a spring-mass system

To validate the proposed operators for the further decomposition of
subspace S(3) of problems with C3v symmetry, a spring-mass dynamic
model with 3 degrees of freedom (d.o.f.) {u1, u2, u3} representing the
rectilinear motions of 3 masses {m1, m2, m3}, each of magnitude m as
shown in Fig. 4(a), was considered. Each mass is connected to a rigid
support by a spring of stiffness k1, and to the other twomasses by springs
of stiffness k2, as shown in Fig. 4(a). The C3v symmetry of the configu-
ration becomes clearer if it is re-drawn as shown in Fig. 4(b). Clearly the
two systems (the one in Fig. 4(a), and the one in Fig. 4(b)) are dynam-
ically equivalent.

This example was considered in a previous study of the first author
[26], where natural frequencies of vibration for all subspaces of the
problem were computed, but without the further decomposition of

A. Zingoni and C. Kaluba



Engineering Structures 317 (2024) 118661

8

subspace S(3) proposed here. By applying idempotents P(1), P(2) and P(3)
(as given by Eqs. (2) – (4)) on the freedoms {u1, u2, u3} of the trans-
formed configuration (Fig. 4(b)), it was found that subspace S(1) is
1-dimensional (i.e. it has only one basis vector), subspace S(2) is a null
subspace, and subspace S(3) is 2-dimensional. In that study, subspace S(3)

was indeed shown to have doubly repeating natural frequencies, but
these frequencies were computed using the basis vectors of the 2-dimen-
sional subspace S(3). With ω2 = λ denoting an eigenvalue of the system,
where ω is a natural circular frequency of the system, the two eigen-
values for subspace S(3) were obtained as follows:

(
ω2)(3)

1 =
(
ω2)(3)

2 =
k1 + 3k2

m
(29)

As a way of validating the newly proposed procedure for the auto-
matic decomposition of subspace S(3), the operators P(3,1) and P(3,2) (Eqs.
(22) and (23)) will be applied to the spring-mass system in Fig. 4, to see
if the same eigenvalues (as given by Eq. (29)) can be obtained.

By reference to the configuration in Fig. 4(b) (this has 3-fold rota-
tional symmetry about the centre of symmetry O, and three reflection
planes 1 − 1, 2 − 2 and 3 − 3 as shown), we apply operator P(3,1) first, to
the freedoms {u1, u2, u3} in turn, to obtain symmetry-adapted freedoms
as follows:

P(3,1)u1 = 1
6
(
2e − C3 − C− 1

3 − σ1 − σ2 +2σ3
)
u1

=
1
6
(2u1 − u2 − u3 − u1 − u3 +2u2) =

1
6
(u1 + u2 − 2u3) (30a)

P(3,1)u2 =
1
6
(
2e − C3 − C− 1

3 − σ1 − σ2 +2σ3
)
u2

=
1
6
(2u2 − u3 − u1 − u3 − u2 +2u1) =

1
6
(u1 + u2 − 2u3) = P(3,1)u1 (30b)

Fig. 3. Decomposition of subspace S(3) of the triangular space grid: (a) basis-vector plots of subspace S(3,1); (b) basis-vector plots of subspace S(3,2).

Fig. 4. A 3 d.o.f. spring–mass system: (a) actual configuration; (b) transformed
configuration with C3v symmetry [26].
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P(3,1)u3 =
1
6
(
2e − C3 − C− 1

3 − σ1 − σ2 +2σ3
)
u3

=
1
6
(2u3 − u1 − u2 − u2 − u1 +2u3) = −

2
6
(u1 + u2 − 2u3) = − 2P(3,1)u1

(30c)

Thus, subspace S(3,1) has only one independent symmetry-adapted
freedom. The basis vector of subspace S(3,1) may be taken as

Φ(3,1) = u1 + u2 − 2u3 = {1 1 − 2 }

⎧
⎨

⎩

u1
u2
u3

⎫
⎬

⎭
=

{
B(3,1)}T

{U} (31)

where

{
B(3,1)} =

⎧
⎨

⎩

1
1
− 2

⎫
⎬

⎭
; {U} =

⎧
⎨

⎩

u1
u2
u3

⎫
⎬

⎭
(32a, b)

Similarly, applying operator P(3,2) to the three freedoms {u1, u2, u3}
in turn, we obtain symmetry-adapted freedoms as follows:

P(3,2)u1 = 1
6
(
2e − C3 − C− 1

3 +σ1 +σ2 − 2σ3
)
u1

=
1
6
(2u1 − u2 − u3 + u1 + u3 − 2u2) =

1
6
(3u1 − 3u2) (33a)

P(3,2)u2 = 1
6

(
2e − C3 − C− 1

3 +σ1 +σ2 − 2σ3
)
u2

=
1
6
(2u2 − u3 − u1 + u3 + u2 − 2u1) =

1
6
(3u2 − 3u1) = − P(3,2)u1 (33b)

P(3,2)u3 = 1
6

(
2e − C3 − C− 1

3 +σ1 +σ2 − 2σ3
)
u3

=
1
6
(2u3 − u1 − u2 + u2 + u1 − 2u3) = 0 (33c)

Thus, subspace S(3,2) also has only one independent symmetry-
adapted freedom. The basis vector of subspace S(3,2) may be taken as

Φ(3,2) = u1 − u2 = {1 − 1 0 }

⎧
⎨

⎩

u1
u2
u3

⎫
⎬

⎭
=

{
B(3,2)}T

{U} (34)

where

{
B(3,2)} =

⎧
⎨

⎩

1
− 1
0

⎫
⎬

⎭
; {U} =

⎧
⎨

⎩

u1
u2
u3

⎫
⎬

⎭
(35a, b)

From Equations (32a) and (35a), we have

{
B(3,1)}T{B(3,2)} = {1 1 − 2 }

⎧
⎨

⎩

1
− 1
0

⎫
⎬

⎭
= 1 − 1+0 = 0 (36)

showing that basis vectors Φ(3,1) and Φ(3,2), spanning subspaces S(3,1)

and S(3,2) respectively, are orthogonal to each other, as we would expect
them to be (in the light of the already proven orthogonality of operators
P(3,1) and P(3,2)).

To obtain the symmetry-adapted stiffness matrices of subspaces S(3,1)

and S(3,2), we return to the original physical system as shown in Fig. 4(a).
We assign unit values of {u1, u2, u3} in the basis-vector expressions for
Φ(3,1) and Φ(3,2) as given by Eqs. (31) and (34), then simultaneously apply
the ensuing displacements on the masses {m1, m2, m3}. The applied
displacements {b1, b2, b3}, on masses {m1, m2, m3} respectively, are
simply given by the elements of B(3,1) for subspace S(3,1) (see Equation
(32a)) and the elements of B(3,2) for subspace S(3,2) (see Equation (35a)).
The application of these displacements is illustrated in Fig. 5. The dis-
placements are considered positive when pointing towards the right.

As a result of the displacements of the masses, the springs will be
stretched or compressed (as the case may be), exerting forces on the
masses that tend to restore the masses to their equilibrium positions. The
net restoring forces on masses {m1, m2, m3}, considered positive when
pointing towards the left (i.e. opposite to the direction of positive dis-
placements), are shown in Table 2 for both the situation in Fig. 5(a) and
the situation in Fig. 5(b).

By reference to Table 2, and considering subspace S(3,1) first, the
restoring force per unit value of b is (k1 +3k2) at each location of mass.
Therefore, the stiffness k(3,1) for subspace S(3,1) is given by

k(3,1) = (k1 +3k2) (37)

Fig. 5. Application of displacement components of basis vectors for the 3 d.o.f. spring-mass dynamic system: (a) displacements of subspace S(3,1); (b) displacements
of subspace S(3,2).
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The mass upon which this force acts has the value m at each location
of mass. Therefore, the characteristic equation for subspace S(3,1), given

by
{
k(3,1) − ω2m = 0

}
, becomes

(k1 +3k2) − ω2m = 0 (38)

where ω2 (the square of the natural circular frequency of the system) is
the one eigenvalue of the subspace. Thus, and by rearranging Eq. (38),
the solution for the eigenvalue of subspace S(3,1) is simply given by

(
ω2)(3,1) =

k1 + 3k2
m

(39)

Considering subspace S(3,2) next, the restoring force per unit value of
b is also (k1 +3k2) at each active location of mass. Therefore, the stiffness
k(3,2) for subspace S(3,2) is given by

k(3,2) = (k1 +3k2) (40)

This leads to the characteristic equation

(k1 +3k2) − ω2m = 0 (41)

for subspace S(3,2), with the solution

(
ω2)(3,2) =

k1 + 3k2
m

(42)

The result for subspace S(3,1) is identical to that for subspace S(3,2) –
compare Eqs. (39) and (42). Thus, through use of operators P(3,1) and
P(3,2) (Eqs. (22) and (23)), we have successfully decomposed the 2-
dimensional space of the degenerate subspace S(3) of the spring-mass
system, into two independent 1-dimensional subspaces S(3,1) and S(3,2),
allowing the computation of the doubly-repeating solutions of subspace
S(3) to be performed separately and more easily within the smaller
subspaces S(3,1) and S(3,2). The subspaces S(3,1) and S(3,2) yield equal ei-
genvalues (the repeating solutions of subspace S(3)), but the eigenvectors
of the two subspaces are orthogonal, the mode shapes being given by
B(3,1) and B(3,2) (the coefficients of the respective basis vectors) – see
Equations (32a) and (35a).

The results for the eigenvalues of subspace S(3), as obtained here (see
Eqs. (39) and (42)), are exactly identical to those obtained in earlier
work [26], but without the use of operators P(3,1) and P(3,2) – see the
result in Eq. (29).

By validating the results obtained here against those reported in
earlier work [26], we have shown that the proposed operators P(3,1) and
P(3,2) can be reliably used to achieve a further decomposition of the
degenerate subspace S(3) of problems belonging to the symmetry group
C3v, into two independent subspaces S(3,1) and S(3,2) that feature iden-
tical sets of eigenvalues, but orthogonal sets of eigenvectors.

6.2. In-plane buckling of a triangular frame

As additional validation, the buckling of a rigid 3-sided regular
polygonal frame, under the compressive action of equal joint loads
directed towards the centre of symmetry, was considered. The
arrangement is shown in Fig. 6(a). For simplicity, we assume the frame
has only three degrees of freedom, namely the joint rotations {θ1, θ2,
θ3} as shown in Fig. 6(b), and on this basis, use group theory in

combination with the slope-deflection method of structural analysis to
calculate the buckling loads (eigenvalues) and buckling modes (eigen-
vectors) of the frame under this loading arrangement. This problem was
considered in a recent study [34], but without the use of the new op-
erators. By applying the idempotent P(3) (as given by Eq. (4)) on the
rotational freedoms {θ1, θ2, θ3}, the basis vectors for subspace S(3) were
found to be as follows:

Φ(3)
1 = 2θ1 − θ2 − θ3 (43a)

Φ(3)
2 = 2θ2 − θ1 − θ3 (43b)

Clearly, subspace S(3) is 2-dimensional. In previous work [34],
further decomposition of subspace S(3) was achieved by a search for a
linear combination of the two basis vectors of subspace S(3) (Eqs. (43)),
such that the ensuing basis vectors were orthogonal to each other, thus
yielding the basis vectors of the semi-subspaces S(3,1) and S(3,2). Here, we
will decompose subspace S(3) more systematically by using the operators
in Eqs. (22) and (23).

By reference to the system of symmetry axes shown in Fig. 6(b), we
first apply the operator P(3,1) (Eq. (22)) on the rotational freedoms
{θ1, θ2, θ3}, to obtain:-

P(3,1)θ1 = 1
6
(
2e − C3 − C− 1

3 − σ1 − σ2 +2σ3
)
θ1

=
1
6
(2θ1 − θ2 − θ3 + θ1 + θ3 − 2θ2) =

3
6
(θ1 − θ2) (44a)

P(3,1)θ2 = 1
6

(
2e − C3 − C− 1

3 − σ1 − σ2 +2σ3
)
θ2

=
1
6
(2θ2 − θ3 − θ1 + θ3 + θ2 − 2θ1) = −

3
6
(θ1 − θ2) = − P(3,1)θ1 (44b)

P(3,1)θ3 = 1
6

(
2e − C3 − C− 1

3 − σ1 − σ2 +2σ3
)
θ3

=
1
6
(2θ3 − θ1 − θ2 + θ2 + θ1 − 2θ3) = 0 (44c)

Thus, subspace S(3,1) is 1-dimensional, and its basis vector may be
taken as

Φ(3,1) = θ1 − θ2 = {1 − 1 0 }

⎧
⎨

⎩

θ1
θ2
θ3

⎫
⎬

⎭
=

{
B(3,1)}T

{Θ} (45)

where

{
B(3,1)} =

⎧
⎨

⎩

1
− 1
0

⎫
⎬

⎭
; {Θ} =

⎧
⎨

⎩

θ1
θ2
θ3

⎫
⎬

⎭
(46a, b)

Similarly, applying operator P(3,2) (Eq. (23)) on the rotations
{θ1, θ2, θ3}, we obtain:-

Table 2
Restoring forces on masses {m1, m2, m3} due to displacements {b1, b2, b3}.

Mass Subspace S(3,1) Subspace S(3,2)

Displacement Restoring Force Displacement Restoring Force

m1 = m b1 = + 1.0 (k1 + 3k2) b1 = + 1.0 (k1 + 3k2)
m2 = m b2 = + 1.0 (k1 + 3k2) b2 = − 1.0 − (k1 + 3k2)
m3 = m b3 = − 2.0 − 2(k1 + 3k2) b3 = 0.0 0.0

Fig. 6. C3v-symmetric triangular frame subjected to point loads P directed to-
wards centre of symmetry: (a) loading configuration; (b) rotational joint free-
doms [34].
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P(3,2)θ1 =
1
6
(
2e − C3 − C− 1

3 + σ1 + σ2 − 2σ3
)
θ1

=
1
6
(2θ1 − θ2 − θ3 − θ1 − θ3 +2θ2) =

1
6
(θ1 + θ2 − 2θ3) (47a)

P(3,2)θ2 =
1
6
(
2e − C3 − C− 1

3 + σ1 + σ2 − 2σ3
)
θ2

=
1
6
(2θ2 − θ3 − θ1 − θ3 − θ2 +2θ1) =

1
6
(θ1 + θ2 − 2θ3) = P(3,2)θ1 (47b)

P(3,2)θ3 =
1
6
(
2e − C3 − C− 1

3 + σ1 + σ2 − 2σ3
)
θ3

=
1
6
(2θ3 − θ1 − θ2 − θ2 − θ1 +2θ3) = −

2
6
(θ1 + θ2 − 2θ3) = − 2P(3,2)θ1

(47c)

Thus, subspace S(3,2) is also 1-dimensional. Its basis vector may be
taken as:-

Φ(3,2) = θ1 + θ2 − 2θ3 = {1 1 − 2 }

⎧
⎨

⎩

θ1
θ2
θ3

⎫
⎬

⎭
=

{
B(3,2)}T

{Θ} (48)

where

{
B(3,2)} =

⎧
⎨

⎩

1
1
− 2

⎫
⎬

⎭
; {Θ} =

⎧
⎨

⎩

θ1
θ2
θ3

⎫
⎬

⎭
(49a, b)

From Eqs. (46a) and (49a), we have

{
B(3,1)}T{B(3,2)} = {1 − 1 0 }

⎧
⎨

⎩

1
1
− 2

⎫
⎬

⎭
= 1 − 1+ 0 = 0 (50)

showing that basis vectors Φ(3,1) and Φ(3,2), spanning subspaces S(3,1)

and S(3,2) respectively, are orthogonal to each other, as we would expect
them to be.

Plots of basis vectors Φ(3,1) and Φ(3,2) are shown in Fig. 7. The plot of
basis vector Φ(3,1) has C1v symmetry (i.e. symmetry about axis 3 − 3),
while the plot of basis vector Φ(3,2) has C1 symmetry (i.e. antisymmetry
about axis 3 − 3). These symmetries characterise the modes of sub-
spaces S(3,1) and S(3,2) respectively.

The basis-vector results in Eqs. (45) and (48), obtained on the basis of
the new operators P(3,1) and P(3,2), are exactly the same as those that
were obtained in earlier work [34] without the use of these operators.
This shows yet again that, for physical problems belonging to symmetry
group C3v, the new operators can be relied upon to correctly decompose
subspace S(3) into two independent semi-subspaces S(3,1) and S(3,2)

whose modes are orthogonal to each other.
In the previous work [34], analytical results for eigenvalues and

mode shapes of the triangular frame, computed from all subspaces of the
problem using the group-theoretic formulation, were compared with the
results obtained from a linear eigenvalue buckling analysis of the frame
using the well-known finite-element programme ABAQUS. The first
eight modes as computed from the finite-element analysis (FEM) are
shown in Fig. 8. Comparisons between group-theoretic (GRT) and nu-
merical (FEM) results were made for the first six modes, and are shown
in Table 3. In the table, the modes of the triangular frame are presented
in ascending order of natural frequencies, with their symmetries (and
the subspaces to which the modes belong) indicated in column 5.

Modes {λ1, λ2} in Fig. 8, corresponding to h = 1 and h = 2 in Table 3,
have equal eigenvalues and belong to subspaces S(3,2) and S(3,1) respec-
tively. Modes {λ5, λ6} in Fig. 8, corresponding to h = 5 and h = 6 in
Table 3, also have equal eigenvalues and belong to subspaces S(3,2) and
S(3,1) respectively. These two pairs of modes belong to the degenerate
parent subspace S(3). The new operators P(3,1) and P(3,2) permit the
analytical computation of C1v-symmetric S(3) modes (belonging to sub-
space S(3,1)) to be separated from the computation of C1-symmetric S(3)

modes (belonging to subspace S(3,2)).
Modes {λ3, λ4} are interesting. They have equal eigenvalues, despite

originating from completely different subspaces (namely, subspaces S(2)

and S(1) respectively). This is purely coincidental, and stems from the
stiffness peculiarities of the frame. Although we would normally asso-
ciate this behaviour (equality of eigenvalues) with degenerate sub-
spaces, different subspaces may also have modes that share the same
eigenvalues under certain circumstances. A simple illustration of this
behaviour is provided by the Euler buckling strut of length l but with
different end conditions. If both ends of the strut are fixed, the first
buckling mode of such a strut is symmetric about the midpoint of the strut
and has the well-known buckling load of 4π2EI/l2. On the other hand, if
both ends of the strut are pinned (free to rotate but restrained against
lateral translation), the second buckling mode of such a strut is anti-
symmetric about the midpoint of the strut, and also has a buckling load of
4π2EI/l2. Clearly the two modes have different symmetry types, and
belong to different subspaces, yet their eigenvalues are numerically
equal.

For all subspaces of the problem, the agreement between theoretical
and FEM results (see Table 3) is excellent, proving the validity of the
group-theoretic formulation that forms the basis of the present work.

7. Concluding remarks

In this contribution, we have presented, for the first time, a new pair
of operators for the full decomposition of the group-theoretic subspaces
of structural configurations belonging to the symmetry group C3v, which
describes the symmetry of a 3-sided regular polygon. Within structural
engineering, and in general, the group-theoretic formulation finds
application in the analysis of plane frames, space frames, cable nets,
space grids, lattice shells and many other types of structures, provided
the structural configurations in question have symmetry properties.

Specifically, by acting on the normal variables of a C3v-symmetric
structural problem (such as nodal positions and degrees of freedom), the
newly proposed operators generate two sets of basis vectors that are
orthogonal to each other, effectively decomposing the degenerate sub-
space S(3) (associated with doubly-repeating solutions of the problem)
into two independent semi-subspaces S(3,1) and S(3,2). In eigenvalue
problems, the two semi-subspaces yield identical sets of eigenvalues.
Modes of the same semi-subspace all have the same symmetry type: S(3,1)
modes are symmetric about a vertical plane of the configuration, while
S(3,2) modes are antisymmetric.

Application of these operators has been illustrated by reference to
the small vertical vibrations of a double-layer triangular space grid.

Fig. 7. Basis-vector plots of subspace S(3) of the C3v-symmetric triangular
frame: (a) Φ(3,1) of subspace S(3,1) (C1v-symmetric); (b) Φ(3,2) of subspace
S(3,2) (C1-symmetric).
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Their validity has been confirmed by consideration of the vibration of a
spring-mass system and the in-plane buckling of a 3-sided regular
polygonal frame, and the obtained eigenvalues and eigenmodes
compared with existing results from the literature. These operators,
which have never been presented before in such a simple form, not only
simplify computations, but also “untangle” the symmetries of subspace
S(3) for ease of study. As an extension of the approach adopted in the
present work, similar operators have just been developed for studying
the degenerate subspaces of the higher-order symmetry group C6v
describing the symmetry of hexagonal systems [35], and work on other
groups is in progress.
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