53. A method-of-lines framework for energy stable arbitrary lagrangian-eulerian methods; Tomas Lundquist, Arnaud G. Malan and Jan Nordström; SIAM Journal on Numerical Analysis, Volume 61, Issue 5, Pages 2327 - 2351, October 2023; https://doi.org/10.1137/22M1514945
52. A provably stable and high-order accurate finite difference approximation for the incompressible boundary layer equations; Mojalefa P. Nchupang, Arnaud G. Malan, Fredrik Laurén, Jan Nordström; Computers & Fluids, Volume 267, 15 December 2023, 106073; DOI: 10.1016/j.compfluid.2023.106073
51. An articulating wingsail design for Wind Assisted Ship Propulsion (WASP) applications; Christopher J von Klemperer, Roy AD Howritz, Arnaud G Malan; Scientific African Volume 20, e01699, July 2023; https://doi.org/10.1016/j.sciaf.2023.e01699
50. Numerical Calculation of Slosh; Leon C Malan, Chiara Pilloton, Andrea Colagrossi, Arnaud G Malan; Applied Sciences, Volume 12, Issue 23,12390, 3 December 2022; https://www.mdpi.com/2076-3417/12/23/12390
49. Embedded One-Dimensional Orifice Elements for Slosh Load Calculations in Volume-Of-Fluid CFD; Elrich Botha, Leon C Malan, Arnaud G Malan: Applied Sciences, Volume 12, Issue 23, 11909, 22 November 2022; https://doi.org/10.3390/app122311909
48. A higher-order accurate VOF interface curvature computation scheme for 3D non-orthogonal structured meshes; Niran A. Ilangakoon, Arnaud G. Malan; Computers & Fluids, Volume 245, 15 September 2022, 105595; https://doi.org/10.1016/j.compfluid.2022.105595
47. Effect of Pulsatility on the Transport of Thrombin in an Idealized Cerebral Aneurysm Geometry; Struan Hume, Jean-Marc Ilunga Tshimanga, Patrick Geoghegan, Arnaud G. Malan, Wei Hua Ho and Malebogo N. Ngoepe; Symmetry, 11 January 2022 14(1), 133; https://doi.org/10.3390/sym14010133
46. CFD Based Non-Dimensional Characterization of Energy Dissipation Due to Verticle Slosh; Michael D Wright, Francesco Gambioli and Arnaud G Malan; Applied Sciences, 5 November 2021 11(10401); https://doi.org/10.3390/app112110401
45. An all-Mach number HLLC based scheme for Multi-phase Flow with Surface Tension; Muhammad Yusufali Oomar, Arnaud G. Malan, Bevan Jones, Roy Horwitz and Genevieve Langdon; Applied Sciences, 10 April 2021 11(8) 3413; https://doi.org/10.3390/app11083413
44. Stable Dynamical Adaptive Mesh Refinement; Tomas Lundquist, Arnaud G. Malan and Jan Nordström; Journal of Scientific Computing, 21 January 2021, 86-43; https://doi.org/10.1007/s10915-021-01414-1
43. A geometric VOF method for interface resolved phase change and conservative thermal energy advection; Leon C. Malan, Arnaud G. Malan, Stéphane Zaleski, Pieter G. Rousseau; Journal of Computational Physics, 16 October 2020, 109920; https://doi.org/10.1016/j.jcp.2020.109920
42. A higher-order accurate surface tension modelling volume-of-fluid scheme for 2D curvilinear meshes; Niran A. Ilangakoon, Arnaud G. Malan, Bevan W.S. Jones; Journal of Computational Physics, Volume 420, 1 November 2020, 109717; https://doi.org/10.1016/j.jcp.2020.109717
41. Aeroelastic Reduced Order Model: Kriging-Corrected Potential Flow; Roy A.D. Horwitz, Arnaud G. Malan, James Braithwaite; Journal of Aircraft, Pages 1–16, 28 Feb 2020; https://doi.org/10.2514/1.C035366
40. Second law analysis of a fossil‐geothermal hybrid power plant with thermodynamic optimization of geothermal preheater; Christa N. Nsanzubuhoro, Tunde Bello-Ochende, Arnaud G. Malan; Heat Transfer -Wiley Periodicals; Pages 1 - 22, 19 February 2020; https://doi.org/10.1002/htj.21692
39. Efficient and error minimized coupling procedures for unstructured and moving meshes; Tomas Lundquist, Arnaud G. Malan and Jan Nordström; Journal of Computational Physics, Volume 406, 1 April 2020; https://doi.org/10.1016/j.jcp.2019.109158
38. Investigating design parameters of a perforated metal gas diffusion layer in a polymer electrolyte membrane fuel cell; Shiro Tanaka, Arnaud G. Malan; Journal of Power Sources, Volume 413, Pages 198-208, 15 February 2019; https://doi.org/10.1016/j.jpowsour.2018.12.045
37. The initialisation of volume fractions for unstructured grids using implicit surface definitions; Bevan W.S. Jones, Arnaud G. Malan, Niran A. Ilangakoon; Computers & Fluids, Volume 179, Pages 194-205, 30 January 2019; https://doi.org/10.1016/j.compfluid.2018.10.021
36. Hybrid Computational-Fluid-Dynamics Platform to Investigate Aircraft Trailing Vortices; Donovan M. Changfoot, Arnaud G. Malan and Jan Nordström; Journal of Aircraft, Volume 56, Number 1, January 2019; https://doi.org/10.2514/1.C035022
35. Novel Nonlinear Fuel Slosh Surrogate Reduced-Order Model for Aircraft Loads Prediction; Byron S. Sykes, Arnaud G. Malan and Francesco Gambioli; Journal of Aircraft, Volume 55, Number 3, May 2018; https://doi.org/10.2514/1.C033860
34. A novel finite volume discretization method for advection–diffusion systems on stretched meshes; D.G. Merrick, A.G. Malan, J.A. van Rooyen; Journal of Computational Physics, Volume 362, Pages 220-242, 1 June 2018; https://doi.org/10.1016/j.jcp.2018.02.025
33. A hybrid framework for coupling arbitrary summation-by-parts schemes on general meshes; Tomas Lundquist, Arnaud Malan, Jan Nordström; Journal of Computational Physics, Volume 362, Pages 49-68, 1 June 2018; https://doi.org/10.1016/j.jcp.2018.02.018
32. An AMG strategy for efficient solution of free-surface flows; Andrew Gavin Bradford Mowat, Wilhelm Johann van den Bergh, Arnaud George Malan, Daniel Wilke; International Journal of Numerical Methods for Heat & Fluid Flow, Volume 26, Issue 3/4, Pages 1172-1186, 3 May 2016; https://doi.org/10.1108/HFF-09-2015-0389
31. Numerical and experimental study of the effects of the electrical resistance and diffusivity under clamping pressure on the performance of a metallic gas-diffusion layer in polymer electrolyte fuel cells; Shiro Tanaka, Warwick W. Bradfield, Cloe Legrand, Arnaud G. Malan; Journal of Power Sources, Volume 330, Pages 273-284, 31 October 2016; https://doi.org/10.1016/j.jpowsour.2016.08.121
30. A matrix free, partitioned solution of fluid–structure interaction problems using finite volume and finite element methods; R. Suliman, O.F. Oxtoby, A.G. Malan, S.Kok; European Journal of Mechanics - B/Fluids, Volume 49, Part A, Pages 272-286, January–February 2015; https://doi.org/10.1016/j.euromechflu.2014.10.002
29. A computationally efficient 3D finite‐volume scheme for violent liquid–gas sloshing; O.F. Oxtoby, A.G. Malan, J.A. Heyns; International Journal of Numerical Methods in Fluids, Volume 79, Issue 6, Pages 306-321, 30 October 2015; https://doi.org/10.1002/fld.4055
28. Hybrid Finite-Volume Reduced-Order Model Method for Nonlinear Aeroelastic Modeling; Andrew G.B. Mowat, Arnaud G. Malan, Louw H. van Zyl and Josua P. Meyer; Journal of Aircraft, Volume 51, Number 6, November 2014; https://doi.org/10.2514/1.C032524
27. An enhanced finite volume method to model 2D linear elastic structures; R. Suliman, O.F. Oxtoby, A.G.Malan, S.Kok; Applied Mathematical Modelling, Volume 38, Issues 7–8, Pages 2265-2279, 1 April 2014; https://doi.org/10.1016/j.apm.2013.10.028
26. An interactive boundary layer modelling methodology for aerodynamic flows; Lelanie Smith, Oliver Oxtoby, A. Malan, Josua Meyer; International Journal of Numerical Methods for Heat & Fluid Flow, Vol 23, Issue 8, Pages 1373-1392, 28 October 2013; https://doi.org/10.1108/HFF-02-2012-0034
25. Development of a compressive surface capturing formulation for modelling free‐surface flow by using the volume‐of‐fluid approach; J.A. Heyns, A.G. Malan, T.M. Harms, O.F. Oxtoby; International Journal of Numerical Methods in Fluids, Volume71, Issue 6, Pages 788-804, 28 February 2013; https://doi.org/10.1002/fld.3694
24. A weakly compressible free-surface flow solver for liquid–gas systems using the volume-of-fluid approach; Johan A. Heyns, Arnaud G. Malan, Thomas M. Harms, Oliver F. Oxtoby; Journal of Computational Physics, Volume 240, Pages 145-157, 1 May 2013; https://doi.org/10.1016/j.jcp.2013.01.022
23. An accelerated, fully-coupled, parallel 3D hybrid finite-volume fluid–structure interaction scheme; A.G.Malan, O.F. Oxtoby; Computer Methods in Applied Mechanics and Engineering, Volume 253, Pages 426-438, 1 January 2013; https://doi.org/10.1016/j.cma.2012.09.004
22. A matrix-free, implicit, incompressible fractional-step algorithm for fluid–structure interaction applications; Oliver Oxtoby, A. Malan; Journal of Computational Physics, Volume 231, Issue 16, Pages 5389-5405, 20 June 2012; https://doi.org/10.1016/j.jcp.2012.04.037
21. An artificial compressibility CBS method for modelling heat transfer and fluid flow in heterogeneous porous materials; A.G. Malan, R.W. Lewis; International Journal of Numerical Methods in Fluids, Volume 87, Issue 1-5, Pages 412-423, 8 July 2011, https://doi.org/10.1002/nme.3125
20. Highly efficient optimization mesh movement method based on proper orthogonal decomposition; A.E.J. Bogaers, S. Kok, A.G. Malan; International Journal of Numerical Methods in Fluids, Volume 86, Issue 8, Pages 935-952, 27 May 2011; https://doi.org/10.1002/nme.3080
19. An artificial compressibility method for buoyancy‐driven flow in heterogeneous saturated packed beds: A homogeneous approach; C.J. Visser, A.G. Malan, J.P. Meyer; International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 18 Issue: 7/8, pp.900-918, 19 September 2008; https://doi.org/10.1108/09615530810899015
18. An artificial compressibility algorithm for modelling natural convection in saturated packed pebble beds: A heterogeneous approach; C.J. Visser, A.G. Malan, J.P. Meyer; International Journal of Numerical Methods in Engineering; Volume 75, Issue 10, Pages 1214-1237, 3 September 2008; https://doi.org/10.1002/nme.2296
17. A flow network formulation for compressible and incompressible flow; J.J. Pretorius, A.G. Malan, J.A. Visser; International Journal of Numerical Methods for Heat & Fluid Flow, Vol 18, Issue 2, pp.185-201, 27 March 2008; https://doi.org/10.1108/09615530810846338
16. Selected papers from the 4th annual heat transfer, fluid dynamics and thermodynamics (HEFAT) conference 2005; Arnaud Malan, Joshua Meyer; Special section: International Journal of Numerical Methods for Heat & Fluid Flow; January 2008; https://publons.com/p/18132414/
15. A cut‐cell non‐conforming Cartesian mesh method for compressible and incompressible flow; J. Pattinson, A.G. Malan, J.P. Meyer; International Journal of Numerical Methods in Engineering; Volume 72, Issue 11, Pages 1332-1354, 10 December 2007; https://doi.org/10.1002/nme.2048
14. Modelling non-linear heat conduction via a fast matrix-free implicit unstructured-hybrid algorithm; A.G. Malan, J.P. Meyer, R.W. Lewis; Volume 196, Issues 45–48, Pages 4495-4504, 15 September 2007; https://doi.org/10.1016/j.cma.2007.05.012
13. Thermal characterisation of rectangular cooling shapes in heat generating mediums - A three-dimensional investigation; Arnaud Malan; Strojniški Vestnik - Journal of Mechanical Engineering, May 22, 2007; http://publons.com/p/11067453/
12. Constructal Conjugate Heat Transfer in Three-Dimensional Cooling Channels; Tunde Bello-Ochende, Leon Liebenberg, Arnaud Malan, Adrian Bejan, Josua Petrus Meyer; Journal of Enhanced Heat Transfer, Volume 14, Issue 4, Pages 279-293, October 2007; https://doi.org/10.1615/JEnhHeatTransf.v14.i4.20
11. An agglomerated FAS multigrid accelerated cut-cell non-collocated Cartesian mesh method for incompressible and compressible flow; Arnaud Malan; South African Journal of Science, Volume 102, Issue 11-12, Pages 537 - 542, November 2006; https://publons.com/p/11067407/
10. Embedded solid State heat extraction in integrated power electronic modules; J. Dirker, Wenduo Liu, J.D. Van Wyk, A.G. Malan, J.P. Meyer; IEEE Transactions on Power Electronics, Volume 20, Issue 3, Pages 694 - 703, May 2005; https://doi.org/10.1109/TPEL.2005.846532
9. Thermal Characterisation of Rectangular Cooling Shapes in Heat Generating Mediums – A Three-Dimensional Investigation; J. Dirker, A.G. Malan, J.P. Meyer; Journal of Mechanical Engineering, Volume 51, Issue 7-8, Pages 391 - 398, January 2005; https://publons.com/p/11067453/
8. Continuum thermodynamic modeling of drying capillary particulate materials via an edge-based algorithm; A.G. Malan, R.W. Lewis; Computer Methods in Applied Mechanics and Engineering, Volume 194, Issues 18–20, Pages 2043-2057, 20 May 2005; https://doi.org/10.1016/j.cma.2003.08.017
7. An edge-based finite volume scheme for saturated–unsaturated groundwater flow; I. Rees, J. Masters, A.G. Malan, R.W. Lewis; Computer Methods in Applied Mechanics and Engineering, Volume 193, Issues 42–44, Pages 4741-4759, 22 October 2004; https://doi.org/10.1016/j.cma.2004.04.003
6. On the development of high-performance C++ object-oriented code with application to an explicit edge-based fluid dynamics scheme; A.G Malan, R.W Lewis; Computers & Fluids, Volume 33, Issue 10, Pages 1291-1304, December 2004; https://doi.org/10.1016/j.compfluid.2003.12.005
5. Modelling coupled heat and mass transfer in drying non‐hygroscopic capillary particulate materials; A. G. Malan, R. W. Lewis; International Journal for Numerical Methods in Biomedical Engineering, Special Issue: 10th Anniversary Conference of ACME‐UK, Volume 19, Issue 9, Pages 669-677, September 2003; https://doi.org/10.1002/cnm.629
4. Continuum thermodynamic modeling of drying capillary particulate materials using an unstructured finite volume algorithm; A.G. Malan, R.W. Lewis; Computational Fluid and Solid Mechanics, Proceedings Second MIT Conference on Compurational Fluid and Solid Mechanics; Pages 1434-1437, June 17–20 2003; https://doi.org/10.1016/B978-008044046-0.50351-1
3. An improved unsteady, unstructured, artificial compressibility, finite volume scheme for viscous incompressible flows: Part II. Application; A.G. Malan, R.W. Lewis, P. Nithiarasu, International Journal for Numerical Methods in Engineering, Volume 54, Issue 5, Pages 715-729, 20 June 2002; https://doi.org/10.1002/nme.443
2. An improved unsteady, unstructured, artificial compressibility, finite volume scheme for viscous incompressible flows: Part I. Theory and implementation; A.G. Malan, R.W. Lewis, P. Nithiarasu; International Journal for Numerical Methods in Engineering, Volume 54, Issue 5, Pages 695-714, 20 June 2002; https://doi.org/10.1002/nme.447
1. HVAC control strategies to enhance comfort and minimise energy usage; E.H. Mathews, C.P. Botha, D.C Arndt, A. Malan; Energy and Buildings, Volume 33, Issue 8, Pages 853-863, October 2001; https://doi.org/10.1016/S0378-7788(01)00075-5