1. Thermal management for high-concentrator photovoltaic systems with jet impingement dimpled heat sinks and twisted tape swirling generators; Jatau T, Malan A.G and Bello-Ochende T; Energy Conversion and Management, Volume 346, 120486, 15 December 2025; https://doi.org/10.1016/j.enconman.2025.120486
  2. A stable and accurate finite difference approximation for the incompressible lid-driven cavity flow with focus on the corner singularities; Nchupang M.P, Malan A.G, Nordström J; Computers and Fluids, Volume 302, 106826, 15 November 2025; https://doi.org/10.1016/j.compfluid.2025.106826
  3. On the relationship between pressure collapse rate and Nusselt number during sloshing in cryogenic liquid hydrogen tanks; Gambioli F and Malan A.G, Mastroddi F;  International Journal of Hydrogen Energy, Volume 183, 151748, 29 October 2025; https://doi.org/10.1016/j.ijhydene.2025.151748
  4. Efficiency analysis of continuous and discontinuous Galerkin finite element methods; Hanif H, Nordström J and Malan A.G; AIMS Mathematics, Volume 10, Issue 9: 22579-22597; 29 September 2025; https://doi.org/10.3934/math.20251005
  5. Novel design of swirling jet impingement heat sink with and without internal Pin-Fins for thermal management of high-concentrator photovoltaic systems; Jatau T, Malan A.G and Bello-Ochende T; Renewable Energy, Volume 243, Article Number 122614, 15 April 2025https://www.scopus.com/record/display.uri?eid=2-s2.0-85217023901&origin=recordpage
  6. An energy stable incompressible multi-phase flow formulation; Nordström J and Malan A.G; Journal of Computational Physics, Volume 523, Article 113685, 15 February 2025https://www.scopus.com/record/display.uri?eid=2-s2.0-85212328719&origin=recordpage
  7. Novel design of centralized square array of pin-fins in microchannels heat sink for thermal management of high concentrator photovoltaic systems; Jatau T, Malan A.G and Bello-Ochende T; Applied Thermal Engineering, Volume 260, Article number 124943, 10.1016/j.applthermaleng.2024.124943, 1 February 2025https://www.scopus.com/record/display.uri?eid=2-s2.0-85209733088&origin=recordpage
  8. A provably stable and high-order accurate finite difference approximation for the incompressible boundary layer equations; Nchupang M.P, Malan A.G, Laurén F, Nordström J;  Computers & Fluids, Volume 267, 106073, 15 December 2023DOI: 10.1016/j.compfluid.2023.106073
  9. A method-of-lines framework for energy stable arbitrary lagrangian-eulerian methods; Lundquist T, Malan A.G and Nordström J;  SIAM Journal on Numerical Analysis, Volume 61, Issue 5, Pages 2327 - 2351, October 2023https://doi.org/10.1137/22M1514945
  10. An articulating wingsail design for Wind Assisted Ship Propulsion (WASP) applications; Von Klemperer  C.J, Horwitz R.A.D, Malan A.G; Scientific African Volume 20, e01699, July 2023https://doi.org/10.1016/j.sciaf.2023.e01699
  11. Numerical Calculation of Slosh; Malan L.C, Pilloton C, Colagrossi A, Malan A.G;  Applied Sciences, Volume 12, Issue 23,12390, 3 December 2022https://www.mdpi.com/2076-3417/12/23/12390
  12. Embedded One-Dimensional Orifice Elements for Slosh Load Calculations in Volume-Of-Fluid CFD; Botha E, Malan L.C, Malan A.G: Applied Sciences, Volume 12, Issue 23, 11909, 22 November 2022https://doi.org/10.3390/app122311909
  13. A higher-order accurate VOF interface curvature computation scheme for 3D non-orthogonal structured meshes; Ilangakoon N.A, Malan A.G; Computers & Fluids, Volume 245,105595, 15 September 2022https://doi.org/10.1016/j.compfluid.2022.105595
  14. Effect of Pulsatility on the Transport of Thrombin in an Idealized Cerebral Aneurysm Geometry; Hume S, Tshimanga J-M.I, Geoghegan P, Malan A.G, Ho W.H and Ngoepe M.N; Symmetry, 14(1), 133, 11 January 2022https://doi.org/10.3390/sym14010133
  15. CFD Based Non-Dimensional Characterization of Energy Dissipation Due to Verticle Slosh; Wright M.D, Gambioli F and Malan A.G; Applied Sciences, 11(10401), 5 November 2021https://doi.org/10.3390/app112110401
  16. An all-Mach number HLLC based scheme for Multi-phase Flow with Surface Tension; Oomar M.Y, Malan A.G, Jones B, Horwitz R.A.D and Langdon G;  Applied Sciences, 11(8) 3413, 10 April 2021https://doi.org/10.3390/app11083413
  17. Stable Dynamical Adaptive Mesh Refinement; Lundquist T, Malan A.G and Nordström J;  Journal of Scientific Computing, 86-43, 21 January 2021https://doi.org/10.1007/s10915-021-01414-1
  18. A geometric VOF method for interface resolved phase change and conservative thermal energy advection; Malan L.C, Malan A.G, Zaleski S, Rousseau P.G; Journal of Computational Physics, 109920, 16 October 2020https://doi.org/10.1016/j.jcp.2020.109920
  19. Sloshing wing dynamics–project overviewAeroelastic Reduced Order Model: Kriging-Corrected Potential Flow; Horwitz R.A.D, Malan A.G, Braithwaite J;  Journal of Aircraft, Pages 1–16, 28 February 2020; https://doi.org/10.2514/1.C035366
  20. Second law analysis of a fossil‐geothermal hybrid power plant with thermodynamic optimization of geothermal preheater; Nsanzubuhoro C.N, Bello-Ochende T, Malan A.G; Heat Transfer -Wiley Periodicals; Pages 1 - 22, 19 February 2020https://doi.org/10.1002/htj.21692
  21. Efficient and error minimized coupling procedures for unstructured and moving meshes; Lundquist T, Malan A.G and Nordström J;  Journal of Computational Physics, Volume 406, 1 April 2020https://doi.org/10.1016/j.jcp.2019.109158
  22. Investigating design parameters of a perforated metal gas diffusion layer in a polymer electrolyte membrane fuel cell; Tanaka S, Malan A.G; Journal of Power Sources, Volume 413, Pages 198-208, 15 February 2019https://doi.org/10.1016/j.jpowsour.2018.12.045
  23. The initialisation of volume fractions for unstructured grids using implicit surface definitions; Jones B.W.S, Malan A.G, Ilangakoon N.A; Computers & Fluids, Volume 179, Pages 194-205, 30 January 2019https://doi.org/10.1016/j.compfluid.2018.10.021  
  24. Hybrid Computational-Fluid-Dynamics Platform to Investigate Aircraft Trailing Vortices; Changfoot D.M, Malan A.G and Nordström J; Journal of Aircraft, Volume 56, Number 1, January 2019https://doi.org/10.2514/1.C035022
  25. Novel Nonlinear Fuel Slosh Surrogate Reduced-Order Model for Aircraft Loads Prediction; Sykes B.S, Malan A.G and Gambioli F; Journal of Aircraft, Volume 55, Number 3, May 2018https://doi.org/10.2514/1.C033860
  26. A novel finite volume discretization method for advection–diffusion systems on stretched meshes; Merrick D.G, Malan A.G, van Rooyen J.A; Journal of Computational Physics, Volume 362, Pages 220-242, 1 June 2018https://doi.org/10.1016/j.jcp.2018.02.025
  27. A hybrid framework for coupling arbitrary summation-by-parts schemes on general meshes; Lundquist T, Malan A.G, Nordström J; Journal of Computational Physics, Volume 362, Pages 49-68, 1 June 2018; https://doi.org/10.1016/j.jcp.2018.02.018
  28. An AMG strategy for efficient solution of free-surface flows; Mowat A.G.B, Van den Bergh W.J, Malan A.G, Wilke D; International Journal of Numerical Methods for Heat & Fluid Flow, Volume 26, Issue 3/4, Pages 1172-1186, 3 May 2016https://doi.org/10.1108/HFF-09-2015-0389
  29. Numerical and experimental study of the effects of the electrical resistance and diffusivity under clamping pressure on the performance of a metallic gas-diffusion layer in polymer electrolyte fuel cells; Tanaka S, Bradfield W.W, Legrand C, Malan A.G; Journal of Power Sources, Volume 330, Pages 273-284, 31 October 2016https://doi.org/10.1016/j.jpowsour.2016.08.121
  30. A matrix free, partitioned solution of fluid–structure interaction problems using finite volume and finite element methods; Suliman R. Oxtoby O.F, Malan A.G, Kok S; European Journal of Mechanics - B/Fluids, Volume 49, Part A, Pages 272-286, January–February 2015https://doi.org/10.1016/j.euromechflu.2014.10.002
  31. A computationally efficient 3D finite‐volume scheme for violent liquid–gas sloshing; Oxtoby O.F, Malan A.G, Heyns J.A; International Journal of Numerical Methods in Fluids, Volume 79, Issue 6, Pages 306-321, 30 October 2015https://doi.org/10.1002/fld.4055
  32. Hybrid Finite-Volume Reduced-Order Model Method for Nonlinear Aeroelastic Modeling; Mowat A.G.B, Malan A.G, Van Zyl L.H and Meyer J.P; Journal of Aircraft, Volume 51, Number 6, November 2014; https://doi.org/10.2514/1.C032524
  33. An enhanced finite volume method to model 2D linear elastic structures; Suliman R, Oxtoby O.F, Malan A.G, Kok S; Applied Mathematical Modelling, Volume 38, Issues 7–8, Pages 2265-2279, 1 April 2014; https://doi.org/10.1016/j.apm.2013.10.028
  34. An interactive boundary layer modelling methodology for aerodynamic flows; Smith L, Oxtoby O.F, Malan A.G, Meyer J.P; International Journal of Numerical Methods for Heat & Fluid Flow, Vol 23, Issue 8, Pages 1373-1392, 28 October 2013https://doi.org/10.1108/HFF-02-2012-0034
  35. Development of a compressive surface capturing formulation for modelling free‐surface flow by using the volume‐of‐fluid approach; Heyns J.A, Malan A.G, Harms T.M, Oxtoby O.F; International Journal of Numerical Methods in Fluids, Volume71, Issue 6, Pages 788-804, 28 February 2013https://doi.org/10.1002/fld.3694
  36. A weakly compressible free-surface flow solver for liquid–gas systems using the volume-of-fluid approach; Heyns J.A, Malan A.G, Harms T.M, Oxtoby O.F; Journal of Computational Physics, Volume 240, Pages 145-157, 1 May 2013https://doi.org/10.1016/j.jcp.2013.01.022
  37. An accelerated, fully-coupled, parallel 3D hybrid finite-volume fluid–structure interaction scheme; Malan A.G, Oxtoby O.F; Computer Methods in Applied Mechanics and Engineering, Volume 253, Pages 426-438, 1 January 2013https://doi.org/10.1016/j.cma.2012.09.004
  38. A matrix-free, implicit, incompressible fractional-step algorithm for fluid–structure interaction applications; Oxtoby O.F, Malan A.G; Journal of Computational Physics, Volume 231, Issue 16, Pages 5389-5405, 20 June 2012https://doi.org/10.1016/j.jcp.2012.04.037
  39. An artificial compressibility CBS method for modelling heat transfer and fluid flow in heterogeneous porous materials; Malan A.G, Lewis R.W; International Journal of Numerical Methods in Fluids, Volume 87, Issue 1-5, Pages 412-423, 8 July 2011https://doi.org/10.1002/nme.3125
  40. Highly efficient optimization mesh movement method based on proper orthogonal decomposition; Bogaers A.E.J, Kok S, Malan A.G; International Journal of Numerical Methods in Fluids, Volume 86, Issue 8, Pages 935-952, 27 May 2011https://doi.org/10.1002/nme.3080
  41. An artificial compressibility method for buoyancy‐driven flow in heterogeneous saturated packed beds: A homogeneous approach; Visser C.J, Malan A.G, Meyer J.P; International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 18 Issue: 7/8, pp.900-918, 19 September 2008https://doi.org/10.1108/09615530810899015  
  42. An artificial compressibility algorithm for modelling natural convection in saturated packed pebble beds: A heterogeneous approach; Visser C.J, Malan A.G, Meyer J.P; International Journal of Numerical Methods in Engineering; Volume 75, Issue 10, Pages 1214-1237, 3 September 2008https://doi.org/10.1002/nme.2296
  43. A flow network formulation for compressible and incompressible flow; Pretorius J.J, Malan A.G, Visser J.A; International Journal of Numerical Methods for Heat & Fluid Flow, Vol 18, Issue 2, pp.185-201, 27 March 2008https://doi.org/10.1108/09615530810846338
  44. Selected papers from the 4th annual heat transfer, fluid dynamics and thermodynamics (HEFAT) conference 2005; Malan A.G, Meyer J.P; Special section: International Journal of Numerical Methods for Heat & Fluid Flow; January 2008https://publons.com/p/18132414/  
  45. A cut‐cell non‐conforming Cartesian mesh method for compressible and incompressible flow; Pattinson J, Malan A.G,  Meyer J.P; International Journal of Numerical Methods in Engineering; Volume 72, Issue 11, Pages 1332-1354, 10 December 2007https://doi.org/10.1002/nme.2048
  46. Modelling non-linear heat conduction via a fast matrix-free implicit unstructured-hybrid algorithm; Malan A.G, Meyer J.P, Lewis R.W; Volume 196, Issues 45–48, Pages 4495-4504, 15 September 2007https://doi.org/10.1016/j.cma.2007.05.012
  47. Thermal characterisation of rectangular cooling shapes in heat generating mediums - A three-dimensional investigation; Malan A.G; Vestnik S- Journal of Mechanical Engineering, May 22, 2007; http://publons.com/p/11067453/
  48. Constructal Conjugate Heat Transfer in Three-Dimensional Cooling Channels; Bello-Ochende T, Liebenberg L, Malan A.G, Bejan A, Meyer J.P; Journal of Enhanced Heat Transfer, Volume 14, Issue 4, Pages 279-293, October 2007https://doi.org/10.1615/JEnhHeatTransf.v14.i4.20
  49. An agglomerated FAS multigrid accelerated cut-cell non-collocated Cartesian mesh method for incompressible and compressible flow; Malan A.G; South African Journal of Science, Volume 102, Issue 11-12, Pages 537 - 542, November 2006https://publons.com/p/11067407/
  50. Embedded solid State heat extraction in integrated power electronic modules; Dirker J, Liu W, Van Wyk J.D, Malan A.G, Meyer J.P; IEEE Transactions on Power Electronics, Volume 20, Issue 3, Pages 694 - 703, May 2005https://doi.org/10.1109/TPEL.2005.846532
  51. Thermal Characterisation of Rectangular Cooling Shapes in Heat Generating Mediums – A Three-Dimensional Investigation; Dirker J, Malan A.G, Meyer J.P; Journal of Mechanical Engineering, Volume 51, Issue 7-8, Pages 391 - 398, January 2005https://publons.com/p/11067453/
  52. Continuum thermodynamic modeling of drying capillary particulate materials via an edge-based algorithm; Malan A.G, Lewis R.W; Computer Methods in Applied Mechanics and Engineering, Volume 194, Issues 18–20, Pages 2043-2057, 20 May 2005https://doi.org/10.1016/j.cma.2003.08.017
  53. An edge-based finite volume scheme for saturated–unsaturated groundwater flow; Rees I, Masters J, Malan A.G, Lewis R.W; Computer Methods in Applied Mechanics and Engineering, Volume 193, Issues 42–44, Pages 4741-4759, 22 October 2004https://doi.org/10.1016/j.cma.2004.04.003
  54. On the development of high-performance C++ object-oriented code with application to an explicit edge-based fluid dynamics scheme; Malan A.G, Lewis R.W; Computers & Fluids, Volume 33, Issue 10, Pages 1291-1304, December 2004https://doi.org/10.1016/j.compfluid.2003.12.005
  55. Modelling coupled heat and mass transfer in drying non‐hygroscopic capillary particulate materials; Malan A.G, Lewis R.W; International Journal for Numerical Methods in Biomedical Engineering, Special Issue: 10th Anniversary Conference of ACME‐UK, Volume 19, Issue 9, Pages 669-677, September 2003https://doi.org/10.1002/cnm.629
  56. Continuum thermodynamic modeling of drying capillary particulate materials using an unstructured finite volume algorithm; Malan A.G, Lewis R.W; Computational Fluid and Solid Mechanics, Proceedings Second MIT Conference on Compurational Fluid and Solid Mechanics; Pages 1434-1437, June 17–20 2003https://doi.org/10.1016/B978-008044046-0.50351-1
  57. An improved unsteady, unstructured, artificial compressibility, finite volume scheme for viscous incompressible flows: Part II. Application; Malan A.G, Lewis R.W, Nithiarasu P, International Journal for Numerical Methods in Engineering, Volume 54, Issue 5, Pages 715-729, 20 June 2002https://doi.org/10.1002/nme.443
  58. An improved unsteady, unstructured, artificial compressibility, finite volume scheme for viscous incompressible flows: Part I. Theory and implementation; Malan A.G, Lewis R.W, Nithiarasu P; International Journal for Numerical Methods in Engineering, Volume 54, Issue 5, Pages 695-714, 20 June 2002https://doi.org/10.1002/nme.447
  59. HVAC control strategies to enhance comfort and minimise energy usage; Mathews E.H, Botha C.P, Arndt D.C, Malan A.G; Energy and Buildings, Volume 33, Issue 8, Pages 853-863, October 2001https://doi.org/10.1016/S0378-7788(01)00075-5