Introduction to Radar: Class Photograph 2014

Course Information

Dates: 3-7 February 2014

Course code: EEE5119Z

Venue: Menzies Seminar Room, 6th Floor, Menzies Building (Upper Campus), University of Cape Town

Course Description

The principal aim of this course is to introduce students to the fundamental principles underlying radar systems and to enable them to understand and apply these principles to generic radar systems. The subject is specifically structured around these aims. On successful completion of this course, students will be able to:

  • describe the main principles underlying radar systems.
  • understand the role of each component of a radar system.
  • use the radar equation to describe the performance of radar systems.
  • understand how target and environmental characteristics affect the choice of system design parameters.
  • describe and assess the relative advantages of different types of radars.

 

 

Download
Course
Handout: Intro
to Radar 2014

Course Overview

The course covers the areas listed below:

  • Overview of key principles: Radar components and processing, radar system functions, radar types, radar applications
  • Radar range equation: Point target derivation, system noise, SNR, system losses
  • Radar waveforms and ambiguity function: CW, single pulse, pulse soppler, coherent vs incoherent, range estimation and range ambiguities, ghosts, sensing Doppler frequencies – Doppler ambiguities, pulse compression, FMCW, phase coding, other waveforms, eg. passive radar, noise radar, ambiguity function definition and properties
  • Transmitters: Waveform generation, power conversion, mixers, duplexors, RF devices – magnetrons, and travelling wavetubes, synchronisation and timing issues
  • Antennas and phased arrays: Radiation patterns, beamwidth, sidelobes and gain, antennas, phased arrays
  • Propagation, scattering and clutter: Propagation, attenuation, refraction, diffraction, etc., scattering, radar cross-section, target fluctuation, clutter, surface and volume clutter, ground clutter for airborne radar
  • Radar receivers RF aspects: Preamplifiers, down-conversion, limiters, noise figures
  • Radar signal processing: Matched filters, range processing, Doppler processing, Fourier transforms, conventional phase shift beamforming, STAP
  • Detection and the radar equation: Detection principles, statistical detection theory, pulse envelope detector, radar equation, integration, CFAR
  • FMCW radars: Doppler effect, FMCW/Pulse compression, FMCW, Ambiguities
  • Parameter estimation and tracking radars: Key basics of estimation theory, range accuracy, frequency estimation, direction of arrival, tracking radars – lobing and monopulse
  • Synthetic aperture radar: Cross-range resolution, synthetic aperture and resolution, azimuthal chirps, SAR image formation, MoComp.

Presenter

Prof Douglas A. Gray is the Professor of Electrical Engineering at the Adelaide University and Director of the University of Adelaide Radar Research Centre.

He received his Ph. D. from the University of Adelaide, in 1973 and then spent 20 years with the Defence Science and Technology Organisation, applying signal processing to sonar and electronic warfare and leading various research and development programs.

From 1993 to 2006, he was Deputy Director of the Cooperative Research Centre for Sensor Signal and Information Processing and led a number of programs and projects in radar, sonar and GPS.

His current radar research interests are in MIMO radar, radar for monitoring weather and bushfires and synthetic aperture radar for surveillance and environmental monitoring.